Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Apply explicit_Field_E with x0, x1, x2, x3, x4, ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x3 x5 x7 = x3 x6 x7x5 = x6.
Assume H0: explicit_Field x0 x1 x2 x3 x4.
Assume H1: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x3 x5 x6) x0.
Assume H2: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7.
Assume H3: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x3 x5 x6 = x3 x6 x5.
Assume H4: prim1 x1 x0.
Assume H5: ∀ x5 . prim1 x5 x0x3 x1 x5 = x5.
Assume H6: ∀ x5 . prim1 x5 x0∃ x6 . and (prim1 x6 x0) (x3 x5 x6 = x1).
Assume H7: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x4 x5 x6) x0.
Assume H8: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7.
Assume H9: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x4 x5 x6 = x4 x6 x5.
Assume H10: prim1 x2 x0.
Assume H11: x2 = x1∀ x5 : ο . x5.
Assume H12: ∀ x5 . prim1 x5 x0x4 x2 x5 = x5.
Assume H13: ∀ x5 . prim1 x5 x0(x5 = x1∀ x6 : ο . x6)∃ x6 . and (prim1 x6 x0) (x4 x5 x6 = x2).
Assume H14: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7).
Let x5 of type ι be given.
Assume H15: prim1 x5 x0.
Let x6 of type ι be given.
Assume H16: prim1 x6 x0.
Let x7 of type ι be given.
Assume H17: prim1 x7 x0.
Assume H18: x3 x5 x7 = x3 x6 x7.
Apply explicit_Field_plus_cancelL with x0, x1, x2, x3, x4, x7, x5, x6 leaving 5 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H17.
The subproof is completed by applying H15.
The subproof is completed by applying H16.
Apply H3 with x7, x5, ... leaving 3 subgoals.
...
...
...