Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιι be given.
Let x2 of type ιι be given.
Let x3 of type ιιο be given.
Let x4 of type ιιο be given.
Assume H0: ∀ x5 . prim1 x5 x0x1 x5 = x2 x5.
Assume H1: ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0iff (x3 x5 x6) (x4 x5 x6).
Claim L2: 0fc90.. x0 x1 = 0fc90.. x0 x2
Apply unknownprop_075a71193d04eff3936ee7246a228619e3dbe0ea2b9d96d40e9b467470ee4a92 with x0, x1, x2.
The subproof is completed by applying H0.
Apply L2 with λ x5 x6 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x7 . If_i (x7 = 4a7ef..) x0 (If_i (x7 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) (d2155.. x0 x3))) = 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x7 . If_i (x7 = 4a7ef..) x0 (If_i (x7 = 4ae4a.. 4a7ef..) x5 (d2155.. x0 x4))).
Claim L3: d2155.. x0 x3 = d2155.. x0 x4
Apply unknownprop_75d5b46497f20dc30e2e5351a60197c4fa9d445bc23c6c8245597bb858180907 with x0, x3, x4.
The subproof is completed by applying H1.
Apply L3 with λ x5 x6 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x7 . If_i (x7 = 4a7ef..) x0 (If_i (x7 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) (d2155.. x0 x3))) = 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x7 . If_i (x7 = 4a7ef..) x0 (If_i (x7 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) x5)).
Let x5 of type ιιο be given.
Assume H4: x5 (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) (d2155.. x0 x3)))) (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) (d2155.. x0 x3)))).
The subproof is completed by applying H4.