Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: atleastp u6 x0.
Let x1 of type ο be given.
Assume H1: ∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0(x2 = x3∀ x8 : ο . x8)(x2 = x4∀ x8 : ο . x8)(x2 = x5∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x2 = x7∀ x8 : ο . x8)(x3 = x4∀ x8 : ο . x8)(x3 = x5∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x3 = x7∀ x8 : ο . x8)(x4 = x5∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x4 = x7∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)(x5 = x7∀ x8 : ο . x8)(x6 = x7∀ x8 : ο . x8)x1.
Claim L2: ...
...
Apply unknownprop_611d05f3c0e0aff033700ccf72b7ceaf4160dd0bd5dde16fbd4a43684d4061b2 with x0, x1 leaving 2 subgoals.
The subproof is completed by applying L2.
Let x2 of type ι be given.
Assume H3: x2x0.
Let x3 of type ι be given.
Assume H4: x3x0.
Let x4 of type ι be given.
Assume H5: x4x0.
Let x5 of type ι be given.
Assume H6: x5x0.
Let x6 of type ι be given.
Assume H7: x6x0.
Assume H8: x2 = x3∀ x7 : ο . x7.
Assume H9: x2 = x4∀ x7 : ο . x7.
Assume H10: x2 = x5∀ x7 : ο . x7.
Assume H11: x2 = x6∀ x7 : ο . x7.
Assume H12: x3 = x4∀ x7 : ο . x7.
Assume H13: x3 = x5∀ x7 : ο . x7.
Assume H14: x3 = x6∀ x7 : ο . x7.
Assume H15: x4 = x5∀ x7 : ο . x7.
Assume H16: x4 = x6∀ x7 : ο . x7.
Assume H17: x5 = x6∀ x7 : ο . x7.
Apply xm with ∀ x7 : ο . (∀ x8 . x8x0(x2 = x8∀ x9 : ο . x9)(x3 = x8∀ x9 : ο . x9)(x4 = x8∀ x9 : ο . x9)(x5 = x8∀ x9 : ο . x9)(x6 = x8∀ x9 : ο . x9)x7)x7, x1 leaving 2 subgoals.
Assume H18: ∀ x7 : ο . (∀ x8 . x8x0(x2 = x8∀ x9 : ο . x9)(x3 = x8∀ x9 : ο . x9)(x4 = x8∀ x9 : ο . x9)(x5 = x8∀ x9 : ο . x9)(x6 = x8∀ x9 : ο . x9)x7)x7.
Apply H18 with x1.
Let x7 of type ι be given.
Assume H19: x7x0.
Assume H20: x2 = x7∀ x8 : ο . x8.
Assume H21: x3 = x7∀ x8 : ο . x8.
Assume H22: x4 = x7∀ x8 : ο . x8.
Assume H23: x5 = x7∀ x8 : ο . x8.
Assume H24: ...∀ x8 : ο . x8.
...
...