Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Apply explicit_Reals_E with x0, x1, x2, x3, x4, x5, ∀ x6 . x6omeganat_primrec x2 (λ x7 x8 . x3 x2 x8) x6 = x1∀ x7 : ο . x7.
Assume H0: explicit_Reals x0 x1 x2 x3 x4 x5.
Apply explicit_OrderedField_E with x0, x1, x2, x3, x4, x5, (∀ x6 . x6x0∀ x7 . x7x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∃ x8 . and (x8Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x7 (x4 x8 x6)))(∀ x6 . x6setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x8 . x8Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8)))∃ x8 . and (x8x0) (∀ x9 . x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x6 x9) x8) (x5 x8 (ap x7 x9))))∀ x6 . x6omeganat_primrec x2 (λ x7 x8 . x3 x2 x8) x6 = x1∀ x7 : ο . x7.
Assume H1: explicit_OrderedField x0 x1 x2 x3 x4 x5.
Apply explicit_Field_E with x0, x1, x2, x3, x4, ..................(∀ x6 . ...∀ x7 . ...(∀ x8 . ...and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) ...))∃ x8 . and (x8x0) (∀ x9 . x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x6 x9) x8) (x5 x8 (ap x7 x9))))∀ x6 . x6omeganat_primrec x2 (λ x7 x8 . x3 x2 x8) x6 = x1∀ x7 : ο . x7.
...