Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Let x7 of type ιιι be given.
Let x8 of type ιιο be given.
Assume H0: ∀ x9 . x9x0∀ x10 . x10x0x3 x9 x10 = x6 x9 x10.
Assume H1: ∀ x9 . x9x0∀ x10 . x10x0x4 x9 x10 = x7 x9 x10.
Assume H2: ∀ x9 . x9x0∀ x10 . x10x0iff (x5 x9 x10) (x8 x9 x10).
Apply explicit_OrderedField_E with x0, x1, x2, x3, x4, x5, explicit_OrderedField x0 x1 x2 x6 x7 x8.
Assume H3: explicit_OrderedField x0 x1 x2 x3 x4 x5.
Apply explicit_Field_E with x0, x1, x2, x3, x4, (∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x5 x9 x10x5 x10 x11x5 x9 x11)(∀ x9 . x9x0∀ x10 . x10x0iff (and (x5 x9 x10) (x5 x10 x9)) (x9 = x10))(∀ x9 . x9x0∀ x10 . x10x0or (x5 x9 x10) (x5 x10 x9))(∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x5 x9 x10x5 (x3 x9 x11) (x3 x10 x11))(∀ x9 . x9x0∀ x10 . x10x0x5 x1 x9x5 x1 x10x5 x1 (x4 x9 x10))explicit_OrderedField x0 x1 x2 x6 x7 x8.
Assume H4: explicit_Field x0 x1 x2 x3 x4.
Assume H5: ∀ x9 . x9x0∀ x10 . x10x0x3 x9 x10x0.
Assume H6: ∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x3 x9 (x3 x10 x11) = x3 (x3 x9 x10) x11.
Assume H7: ∀ x9 . x9x0∀ x10 . x10x0x3 x9 x10 = x3 x10 x9.
Assume H8: x1x0.
Assume H9: ∀ x9 . x9x0x3 x1 x9 = x9.
Assume H10: ∀ x9 . x9x0∃ x10 . and (x10x0) (x3 x9 x10 = x1).
Assume H11: ∀ x9 . ...∀ x10 . x10x0x4 x9 x10x0.
...