Let x0 of type ι → ο be given.
Let x1 of type ι → ι → ι be given.
Assume H0: ∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3).
Assume H1: ∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4).
Assume H2: ∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Assume H3: x0 x2.
Assume H4: x0 x3.
Assume H5: x0 x4.
Assume H6: x0 x5.
Assume H7: x0 x6.
Assume H8: x0 x7.
Assume H9: x0 x8.
Apply H2 with
x7,
x8,
λ x9 x10 . x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x10)))) = x1 x6 (x1 x2 (x1 x5 (x1 x3 (x1 x8 (x1 x4 x7))))) leaving 3 subgoals.
The subproof is completed by applying H8.
The subproof is completed by applying H9.
Apply unknownprop_6b3a3b0abeb2e23ee493f303981b31c005f0354565384101e4b85aafcb41ed2b with
x0,
x1,
x2,
x3,
x4,
x5,
x6,
x8,
x7 leaving 9 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying H6.
The subproof is completed by applying H7.
The subproof is completed by applying H9.
The subproof is completed by applying H8.