Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: ∀ x1 . x0 x1struct_p x1.
Assume H1: ∀ x1 x2 . x0 x1x0 x2x0 (b0670.. x1 x2).
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H2: x0 x1.
Assume H3: x0 x2.
Claim L4: ...
...
Apply L4 with and (and (and (and (and (x0 x1) (x0 x2)) (x0 (b0670.. x1 x2))) (UnaryPredHom (b0670.. x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)))) (UnaryPredHom (b0670.. x1 x2) x2 (lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)))) (∀ x3 . ...∀ x4 x5 . ......and (and (and (UnaryPredHom x3 (b0670.. x1 x2) ((λ x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9)))) x3 x4 x5)) (struct_comp x3 (b0670.. x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x6 . ap x6 0)) ((λ x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9)))) x3 x4 x5) = x4)) (struct_comp x3 (b0670.. x1 x2) x2 (lam (setprod (ap x1 0) (ap x2 0)) (λ x6 . ap x6 1)) ((λ x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9)))) x3 x4 x5) = x5)) (∀ x6 . UnaryPredHom x3 (b0670.. x1 ...) ...struct_comp x3 (b0670.. x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x7 . ap x7 0)) x6 = x4struct_comp x3 (b0670.. x1 x2) x2 (lam (setprod (ap x1 0) (ap x2 0)) (λ x7 . ap x7 1)) x6 = x5x6 = (λ x7 x8 x9 . lam (ap x7 0) (λ x10 . lam 2 (λ x11 . If_i (x11 = 0) (ap x8 x10) (ap x9 x10)))) x3 x4 x5)).
...