Let x0 of type ι → ο be given.
Let x1 of type ι → ο be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H0: ∀ x8 : ι → ο . x8 x2 ⟶ x8 x3 ⟶ x8 x4 ⟶ x8 x5 ⟶ x8 x6 ⟶ x8 x7 ⟶ ∀ x9 . x0 x9 ⟶ x8 x9.
Assume H1:
∀ x8 . x0 x8 ⟶ not (x1 x8) ⟶ ∀ x9 : ι → ο . x9 x6 ⟶ x9 x7 ⟶ x9 x8.
Assume H2: x0 x2.
Assume H3: x0 x3.
Assume H4: x0 x4.
Assume H5: x0 x5.
Assume H6: x0 x6.
Assume H7: x0 x7.
Assume H8: x1 x2.
Assume H9: x1 x3.
Assume H10: x1 x4.
Assume H11: x1 x5.
Let x8 of type ι → ι → ι → ι → ο be given.
Assume H14:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x2).
Assume H15:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x2).
Assume H16:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x4 x10 x3).
Assume H17:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x3).
Assume H18:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x3).
Assume H19:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x4).
Assume H20:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x4).
Assume H21:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x5).
Assume H22:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x5).
Assume H23:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x6).
Assume H24:
∀ x9 . x0 x9 ⟶ not (x8 x2 x9 x2 x9).
Assume H25:
∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x2 x9).
Assume H26:
∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x2 x9).
Assume H27:
∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x2 x9).
Assume H28:
∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x2 x9).
Assume H29:
∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x2 x9).