Let x0 of type ο be given.
Apply H0 with
3fa3a...
Let x1 of type ο be given.
Apply H1 with
λ x2 x3 . lam (ap x2 0) (λ x4 . Inj0 x4).
Let x2 of type ο be given.
Apply H2 with
λ x3 x4 . lam (ap x4 0) (λ x5 . Inj1 x5).
Let x3 of type ο be given.
Apply H3 with
λ x4 x5 x6 x7 x8 . lam (setsum (ap x4 0) (ap x5 0)) (λ x9 . combine_funcs (ap x4 0) (ap x5 0) (λ x10 . ap x7 x10) (λ x10 . ap x8 x10) x9).
Apply unknownprop_8014f2189a8e9a90722a83ab5f5b4d52ecd6d5c686aac8aa2eb5343a4f9f7780 with
IrreflexiveSymmetricReln leaving 2 subgoals.
Let x4 of type ι be given.
Apply H4 with
struct_r x4.
Assume H6:
unpack_r_o x4 (λ x5 . λ x6 : ι → ι → ο . and (∀ x7 . x7 ∈ x5 ⟶ not (x6 x7 x7)) (∀ x7 . x7 ∈ x5 ⟶ ∀ x8 . x8 ∈ x5 ⟶ x6 x7 x8 ⟶ x6 x8 x7)).
The subproof is completed by applying H5.
Let x4 of type ι be given.
Let x5 of type ι be given.
Apply unknownprop_034efb78ebb5063d16d232d7a2af450524a44508ccd003479f3d4a1b105247b8 with
x4,
λ x6 . IrreflexiveSymmetricReln (3fa3a.. x6 x5) leaving 2 subgoals.
The subproof is completed by applying H4.
Let x6 of type ι be given.
Let x7 of type ι → ι → ο be given.
Assume H6:
∀ x8 . x8 ∈ x6 ⟶ not (x7 x8 x8).
Assume H7: ∀ x8 . x8 ∈ x6 ⟶ ∀ x9 . x9 ∈ x6 ⟶ x7 x8 x9 ⟶ x7 x9 x8.
Apply unknownprop_034efb78ebb5063d16d232d7a2af450524a44508ccd003479f3d4a1b105247b8 with
x5,
λ x8 . IrreflexiveSymmetricReln (3fa3a.. (pack_r x6 x7) x8) leaving 2 subgoals.
The subproof is completed by applying H5.
Let x8 of type ι be given.
Let x9 of type ι → ι → ο be given.
Assume H8:
∀ x10 . x10 ∈ x8 ⟶ not (x9 x10 x10).
Assume H9: ∀ x10 . x10 ∈ x8 ⟶ ∀ x11 . x11 ∈ x8 ⟶ x9 x10 x11 ⟶ x9 x11 x10.
Apply unknownprop_2b21d9fc231c558646c467d14a820e3bc5f0cce785ca7db2a0cb0c92dadc07f5 with
x6,
x7,
x8,
x9,
λ x10 x11 . IrreflexiveSymmetricReln x11.
Apply unknownprop_d442b731cc8a623579f119dd4140f334acbb8f35c49c35a487654154f8239ef6 with
setsum x6 x8,
λ x10 x11 . or (and (and (x10 = Inj0 (Unj x10)) (x11 = Inj0 (Unj x11))) (x7 (Unj x10) (Unj x11))) (and (and (x10 = Inj1 (Unj ...)) ...) ...) leaving 2 subgoals.