Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H0: equip x0 x3.
Assume H1: equip x1 x4.
Assume H2: equip x2 x5.
Assume H3: TwoRamseyProp x0 x1 x2.
Let x6 of type ιιο be given.
Assume H4: ∀ x7 x8 . x6 x7 x8x6 x8 x7.
Apply H2 with or (∃ x7 . and (x7x5) (and (equip x3 x7) (∀ x8 . x8x7∀ x9 . x9x7(x8 = x9∀ x10 : ο . x10)x6 x8 x9))) (∃ x7 . and (x7x5) (and (equip x4 x7) (∀ x8 . x8x7∀ x9 . x9x7(x8 = x9∀ x10 : ο . x10)not (x6 x8 x9)))).
Let x7 of type ιι be given.
Assume H5: bij x2 x5 x7.
Claim L6: ...
...
Apply H3 with λ x8 x9 . x6 (x7 x8) (x7 x9), or (∃ x8 . and (x8x5) (and (equip x3 x8) (∀ x9 . x9x8∀ x10 . x10x8(x9 = x10∀ x11 : ο . x11)x6 x9 x10))) (∃ x8 . and (x8x5) (and (equip x4 x8) (∀ x9 . x9x8∀ x10 . x10x8(x9 = x10∀ x11 : ο . x11)not (x6 x9 x10)))) leaving 3 subgoals.
The subproof is completed by applying L6.
Assume H7: ∃ x8 . and (x8x2) (and (equip x0 x8) (∀ x9 . x9x8∀ x10 . x10x8(x9 = x10∀ x11 : ο . x11)(λ x11 x12 . x6 (x7 x11) (x7 x12)) x9 x10)).
Apply orIL with ∃ x8 . and (x8x5) (and (equip x3 x8) (∀ x9 . x9x8∀ x10 . x10x8(x9 = x10∀ x11 : ο . x11)x6 x9 x10)), ∃ x8 . and (x8x5) (and (equip x4 x8) (∀ x9 . x9x8∀ x10 . x10x8(x9 = x10∀ x11 : ο . x11)not (x6 x9 x10))).
Apply unknownprop_a573fcf5678da4095e6e3bf5046c3135bfe4188e3dfb53e0dc34f5c73e140904 with x0, x3, x2, x5, x6, x7 leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H5.
The subproof is completed by applying H7.
Assume H7: ∃ x8 . and (x8x2) (and (equip x1 x8) (∀ x9 . x9x8∀ x10 . x10x8(x9 = x10∀ x11 : ο . x11)not ((λ x11 x12 . x6 (x7 x11) (x7 x12)) x9 x10))).
Apply orIR with ∃ x8 . and (x8x5) (and (equip x3 ...) ...), ....
...