Let x0 of type ι be given.
Let x1 of type ι → ο be given.
Let x2 of type ι be given.
Let x3 of type ι → ο be given.
set y4 to be ...
Let x5 of type ι → ο be given.
Apply unpack_p_i_eq with
(λ x6 . λ x7 : ι → ο . λ x8 . λ x9 : ι → ο . unpack_p_i (pack_p x6 x7) ((λ x10 . λ x11 : ι → ο . λ x12 . λ x13 : ι → ο . pack_p (setsum x10 x12) (λ x14 . or (and (x14 = Inj0 (Unj x14)) (x11 (Unj x14))) (and (x14 = Inj1 (Unj x14)) (x13 (Unj x14))))) x8 x9)) x3 y4,
x1,
x2,
λ x6 . x5 leaving 2 subgoals.
Let x6 of type ι → ο be given.
Assume H2:
∀ x7 . x7 ∈ x1 ⟶ iff (x2 x7) (x6 x7).
Apply L0 with
x1,
x6,
x3,
y4,
λ x7 x8 . x8 = unpack_p_i (pack_p x3 y4) ((λ x9 . λ x10 : ι → ο . λ x11 . λ x12 : ι → ο . pack_p (setsum x9 x11) (λ x13 . or (and (x13 = Inj0 (Unj x13)) (x10 (Unj x13))) (and (x13 = Inj1 (Unj x13)) (x12 (Unj x13))))) x1 x2).
Apply L0 with
x1,
x2,
x3,
y4,
λ x7 x8 . (λ x9 . λ x10 : ι → ο . λ x11 . λ x12 : ι → ο . pack_p (setsum x9 x11) (λ x13 . or (and (x13 = Inj0 (Unj x13)) (x10 (Unj x13))) (and (x13 = Inj1 (Unj x13)) (x12 (Unj x13))))) x1 x6 x3 y4 = x8.
Let x5 of type ι → ι → ο be given.
Apply L1 with
λ x6 . x5 x6 y4 ⟶ x5 y4 x6.
Assume H2: x5 y4 y4.
The subproof is completed by applying H2.