Let x0 of type ι be given.
Apply unknownprop_1ad59b907936b2a3f58528f51c1b27d67d89955cf0fe7705f9645ea773142ed8 with
x0,
∃ x1 . ∀ x2 . iff (prim1 x2 x1) (Subq x2 x0).
Let x1 of type ι be given.
Apply H0 with
∃ x2 . ∀ x3 . iff (prim1 x3 x2) (Subq x3 x0).
Apply H1 with
(∀ x2 . Subq x2 x1 ⟶ or (c2e41.. x2 x1) (prim1 x2 x1)) ⟶ ∃ x2 . ∀ x3 . iff (prim1 x3 x2) (Subq x3 x0).
Apply H2 with
(∀ x2 . prim1 x2 x1 ⟶ ∃ x3 . and (prim1 x3 x1) (∀ x4 . Subq x4 x2 ⟶ prim1 x4 x3)) ⟶ (∀ x2 . Subq x2 x1 ⟶ or (c2e41.. x2 x1) (prim1 x2 x1)) ⟶ ∃ x2 . ∀ x3 . iff (prim1 x3 x2) (Subq x3 x0).
Assume H4:
∀ x2 x3 . prim1 x2 x1 ⟶ Subq x3 x2 ⟶ prim1 x3 x1.
Apply H5 with
x0,
∃ x2 . ∀ x3 . iff (prim1 x3 x2) (Subq x3 x0) leaving 2 subgoals.
The subproof is completed by applying H3.
Let x2 of type ι be given.
Apply H7 with
∃ x3 . ∀ x4 . iff (prim1 x4 x3) (Subq x4 x0).
Assume H9:
∀ x3 . Subq ... ... ⟶ prim1 x3 x2.