Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιιιο be given.
Let x2 of type ιι be given.
Let x3 of type ιιιιιι be given.
Assume H0: MetaCat x0 x1 x2 x3.
Assume H1: ∃ x4 x5 : ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p x0 x1 x2 x3 x4 x5 x6.
Assume H2: ∃ x4 x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p x0 x1 x2 x3 x4 x5 x6 x7.
Claim L3: MetaCat x0 (λ x4 x5 . x1 x5 x4) x2 (λ x4 x5 x6 x7 x8 . x3 x6 x5 x4 x8 x7)
Apply unknownprop_e74d2abe5a1e30f6a719b289885351f18b3a36d32b938dab696ee27d1cef86e5 with x0, x1, x2, x3.
The subproof is completed by applying H0.
Apply unknownprop_9a59ecd7e83aeba0d4be9a32b55c5c57c6083b63a3b259e3f5889e4923a1993d with x0, λ x4 x5 . x1 x5 x4, x2, λ x4 x5 x6 x7 x8 . x3 x6 x5 x4 x8 x7 leaving 3 subgoals.
The subproof is completed by applying L3.
Apply H1 with ∃ x4 x5 : ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 (λ x7 x8 . x1 x8 x7) x2 (λ x7 x8 x9 x10 x11 . x3 x9 x8 x7 x11 x10) x4 x5 x6.
Let x4 of type ιιιιι be given.
Assume H4: (λ x5 : ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p x0 x1 x2 x3 x5 x6 x7) x4.
Apply H4 with ∃ x5 x6 : ι → ι → ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 (λ x8 x9 . x1 x9 x8) x2 (λ x8 x9 x10 x11 x12 . x3 x10 x9 x8 x12 x11) x5 x6 x7.
Let x5 of type ιιιιι be given.
Assume H5: (λ x6 : ι → ι → ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p x0 x1 x2 x3 x4 x6 x7) x5.
Apply H5 with ∃ x6 x7 : ι → ι → ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 (λ x9 x10 . x1 x10 x9) x2 (λ x9 x10 x11 x12 x13 . x3 x11 x10 x9 x13 x12) x6 x7 x8.
Let x6 of type ιιιιιιι be given.
Assume H6: MetaCat_coequalizer_struct_p x0 x1 x2 x3 x4 x5 x6.
Let x7 of type ο be given.
Assume H7: ∀ x8 : ι → ι → ι → ι → ι . (∃ x9 : ι → ι → ι → ι → ι . ∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 (λ x11 x12 . x1 x12 x11) x2 (λ x11 x12 x13 x14 x15 . x3 x13 x12 x11 x15 x14) x8 x9 x10)x7.
Apply H7 with λ x8 x9 . x4 x9 x8.
Let x8 of type ο be given.
Assume H8: ∀ x9 : ι → ι → ι → ι → ι . (∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 (λ x11 x12 . x1 x12 x11) x2 (λ x11 x12 x13 x14 x15 . x3 x13 x12 x11 x15 x14) (λ x11 x12 . x4 x12 x11) x9 x10)x8.
Apply H8 with λ x9 x10 . x5 x10 x9.
Let x9 of type ο be given.
Assume H9: ∀ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 (λ x11 x12 . x1 x12 x11) x2 (λ x11 x12 x13 x14 x15 . x3 x13 x12 x11 x15 x14) (λ x11 x12 . x4 x12 x11) (λ x11 x12 . x5 x12 x11) x10x9.
Apply H9 with λ x10 x11 . x6 x11 x10.
Apply unknownprop_20c1347ac12b8a76491a5d9969246271fef46ed47a599bce83dd091c6cf3b962 with x0, x1, x2, x3, x4, x5, x6.
The subproof is completed by applying H6.
The subproof is completed by applying H2.