Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Apply Repl_Empty with λ x7 . SetAdjoin x7 (Sing 8), λ x7 x8 . binunion (binunion (binunion (binunion (f4b0e.. x0 x1 x2 x3) {(λ x10 . SetAdjoin x10 (Sing 5)) x9|x9 ∈ x4}) {(λ x10 . SetAdjoin x10 (Sing 6)) x9|x9 ∈ x5}) {(λ x10 . SetAdjoin x10 (Sing 7)) x9|x9 ∈ x6}) x8 = binunion (binunion (binunion (f4b0e.. x0 x1 x2 x3) {(λ x10 . SetAdjoin x10 (Sing 5)) x9|x9 ∈ x4}) {(λ x10 . SetAdjoin x10 (Sing 6)) x9|x9 ∈ x5}) {(λ x10 . SetAdjoin x10 (Sing 7)) x9|x9 ∈ x6}.
Apply binunion_idr with binunion (binunion (binunion (f4b0e.. x0 x1 x2 x3) {(λ x8 . SetAdjoin x8 (Sing 5)) x7|x7 ∈ x4}) {(λ x8 . SetAdjoin x8 (Sing 6)) x7|x7 ∈ x5}) {(λ x8 . SetAdjoin x8 (Sing 7)) x7|x7 ∈ x6}, λ x7 x8 . x8 = binunion (binunion (binunion (f4b0e.. x0 x1 x2 x3) {(λ x10 . SetAdjoin x10 (Sing 5)) x9|x9 ∈ x4}) {(λ x10 . SetAdjoin x10 (Sing 6)) x9|x9 ∈ x5}) {(λ x10 . SetAdjoin x10 (Sing 7)) x9|x9 ∈ x6}.
Let x7 of type ιιο be given.
Assume H0: x7 (binunion (binunion (binunion (f4b0e.. x0 x1 x2 x3) {(λ x9 . SetAdjoin x9 (Sing 5)) x8|x8 ∈ x4}) {(λ x9 . SetAdjoin x9 (Sing 6)) x8|x8 ∈ x5}) {(λ x9 . SetAdjoin x9 (Sing 7)) x8|x8 ∈ x6}) (binunion (binunion (binunion (f4b0e.. x0 x1 x2 x3) {(λ x9 . SetAdjoin x9 (Sing 5)) x8|x8 ∈ x4}) {(λ x9 . SetAdjoin x9 (Sing 6)) x8|x8 ∈ x5}) {(λ x9 . SetAdjoin x9 (Sing 7)) x8|x8 ∈ x6}).
The subproof is completed by applying H0.