Let x0 of type ι be given.
Let x1 of type (ι → ο) → ο be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ο be given.
Apply H0 with
λ x5 . x5 = d4d11.. x0 x1 x2 x3 x4 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ prim1 (x2 x6 x7) x0 leaving 2 subgoals.
Let x5 of type ι be given.
Let x6 of type (ι → ο) → ο be given.
Let x7 of type ι → ι → ι be given.
Assume H1:
∀ x8 . prim1 x8 x5 ⟶ ∀ x9 . prim1 x9 x5 ⟶ prim1 (x7 x8 x9) x5.
Let x8 of type ι → ι → ο be given.
Let x9 of type ι → ο be given.
Apply unknownprop_3508c29f47ceddb1a546c7b1ff3842f6f9a5136281b23a3708ce12cac3505b06 with
x5,
x0,
x6,
x1,
x7,
x2,
x8,
x3,
x9,
x4,
∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0 leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H3:
and (and (and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11 ⟶ prim1 x11 x5) ⟶ x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5 ⟶ ∀ x11 . prim1 x11 x5 ⟶ x7 x10 x11 = x2 x10 x11)) (∀ x10 . prim1 x10 x5 ⟶ ∀ x11 . prim1 x11 x5 ⟶ x8 x10 x11 = x3 x10 x11).
Apply H3 with
(∀ x10 . prim1 x10 x5 ⟶ x9 x10 = x4 x10) ⟶ ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0.
Assume H4:
and (and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11 ⟶ prim1 x11 x5) ⟶ x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5 ⟶ ∀ x11 . prim1 x11 x5 ⟶ x7 x10 x11 = x2 x10 x11).
Apply H4 with
(∀ x10 . prim1 x10 x5 ⟶ ∀ x11 . prim1 x11 x5 ⟶ x8 x10 x11 = x3 x10 x11) ⟶ (∀ x10 . prim1 x10 x5 ⟶ x9 x10 = x4 x10) ⟶ ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0.
Assume H5:
and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11 ⟶ prim1 x11 x5) ⟶ x6 x10 = x1 x10).
Apply H5 with
... ⟶ ... ⟶ (∀ x10 . prim1 x10 ... ⟶ x9 x10 = x4 x10) ⟶ ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0.