Let x0 of type ι be given.
Let x1 of type ι → ι → ο be given.
Assume H0: ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2.
Let x2 of type ο be given.
Assume H4:
∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ cbd9e.. x1 x3 x4 x5 x6 x7 x8 x9 x10 ⟶ x2.
Assume H5:
∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ e643b.. x1 x3 x4 x5 x6 x7 x8 x9 x10 ⟶ x2.
Assume H6:
∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ 89dbd.. x1 x3 x4 x5 x6 x7 x8 x9 x10 ⟶ x2.
Apply unknownprop_d130c2da353f8a96ebfd044dc62865ee3ee198eb4370e3aa9882d0f235dc1fef with
x0,
x1,
x2 leaving 183 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying L8.
Let x3 of type ι be given.
Assume H67: x3 ∈ x0.
Let x4 of type ι be given.
Assume H68: x4 ∈ x0.
Let x5 of type ι be given.
Assume H69: x5 ∈ x0.
Let x6 of type ι be given.
Assume H70: x6 ∈ x0.
Let x7 of type ι be given.
Assume H71: x7 ∈ x0.
Let x8 of type ι be given.
Assume H72: x8 ∈ x0.
Let x9 of type ι be given.
Assume H73: x9 ∈ x0.
Let x10 of type ι be given.
Assume H74: x10 ∈ x0.
Assume H75:
372ed.. x1 x3 x4 x5 x6 x7 x8 x9 x10.
Apply H75 with
x2.
Assume H76:
7f677.. x1 x3 x4 x5 x6 x7 x8 x9.
Apply FalseE with
... ⟶ (... ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x9 = x10 ⟶ ∀ x11 : ο . x11) ⟶ x1 x3 x10 ⟶ not (x1 x4 x10) ⟶ not (x1 x5 x10) ⟶ not (x1 x6 x10) ⟶ not (x1 x7 x10) ⟶ not (x1 x8 x10) ⟶ not (x1 x9 x10) ⟶ x2.