Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Claim L1: ...
...
Claim L2: ...
...
Claim L3: ...
...
Apply OSNo_proj0proj1_split with mul_OSNo Quaternion_k Octonion_i3, minus_OSNo Octonion_i6 leaving 4 subgoals.
The subproof is completed by applying L3.
Apply OSNo_minus_OSNo with Octonion_i6.
The subproof is completed by applying L2.
Apply minus_OSNo_proj0 with Octonion_i6, λ x0 x1 . OSNo_proj0 (mul_OSNo Quaternion_k Octonion_i3) = x1 leaving 2 subgoals.
The subproof is completed by applying L2.
Apply OSNo_p0_i6 with λ x0 x1 . OSNo_proj0 (mul_OSNo Quaternion_k Octonion_i3) = minus_HSNo x1.
Apply mul_OSNo_proj0 with Quaternion_k, Octonion_i3, λ x0 x1 . x1 = minus_HSNo 0 leaving 3 subgoals.
The subproof is completed by applying L1.
The subproof is completed by applying L0.
Apply OSNo_p0_i3 with λ x0 x1 . add_HSNo (mul_HSNo (OSNo_proj0 Quaternion_k) x1) (minus_HSNo (mul_HSNo (conj_HSNo (OSNo_proj1 Octonion_i3)) (OSNo_proj1 Quaternion_k))) = minus_HSNo 0.
Apply OSNo_p1_i3 with λ x0 x1 . add_HSNo (mul_HSNo (OSNo_proj0 Quaternion_k) 0) (minus_HSNo (mul_HSNo (conj_HSNo x1) (OSNo_proj1 Quaternion_k))) = minus_HSNo 0.
Apply OSNo_p0_k with λ x0 x1 . add_HSNo (mul_HSNo x1 0) (minus_HSNo (mul_HSNo (conj_HSNo (minus_HSNo Complex_i)) (OSNo_proj1 Quaternion_k))) = minus_HSNo 0.
Apply OSNo_p1_k with λ x0 x1 . add_HSNo (mul_HSNo Quaternion_k 0) (minus_HSNo (mul_HSNo (conj_HSNo (minus_HSNo Complex_i)) x1)) = minus_HSNo 0.
Apply mul_HSNo_0R with Quaternion_k, λ x0 x1 . add_HSNo x1 (minus_HSNo (mul_HSNo (conj_HSNo (minus_HSNo Complex_i)) 0)) = minus_HSNo 0 leaving 2 subgoals.
The subproof is completed by applying HSNo_Quaternion_k.
Apply mul_HSNo_0R with conj_HSNo (minus_HSNo Complex_i), λ x0 x1 . add_HSNo 0 (minus_HSNo x1) = minus_HSNo 0 leaving 2 subgoals.
Apply HSNo_conj_HSNo with minus_HSNo Complex_i.
Apply HSNo_minus_HSNo with Complex_i.
The subproof is completed by applying HSNo_Complex_i.
Apply minus_HSNo_0 with λ x0 x1 . add_HSNo 0 x1 = x1.
Apply add_HSNo_0L with 0.
The subproof is completed by applying HSNo_0.
Apply minus_OSNo_proj1 with Octonion_i6, λ x0 x1 . OSNo_proj1 (mul_OSNo Quaternion_k Octonion_i3) = x1 leaving 2 subgoals.
The subproof is completed by applying L2.
Apply OSNo_p1_i6 with λ x0 x1 . OSNo_proj1 (mul_OSNo Quaternion_k Octonion_i3) = minus_HSNo x1.
Apply mul_OSNo_proj1 with Quaternion_k, Octonion_i3, λ x0 x1 . x1 = minus_HSNo (minus_HSNo Quaternion_j) leaving 3 subgoals.
The subproof is completed by applying L1.
The subproof is completed by applying L0.
Apply OSNo_p0_i3 with λ x0 x1 . add_HSNo (mul_HSNo (OSNo_proj1 Octonion_i3) (OSNo_proj0 Quaternion_k)) (mul_HSNo (OSNo_proj1 Quaternion_k) (conj_HSNo x1)) = minus_HSNo (minus_HSNo Quaternion_j).
Apply OSNo_p1_i3 with λ x0 x1 . add_HSNo (mul_HSNo x1 (OSNo_proj0 Quaternion_k)) (mul_HSNo (OSNo_proj1 Quaternion_k) (conj_HSNo 0)) = minus_HSNo (minus_HSNo Quaternion_j).
Apply OSNo_p0_k with λ x0 x1 . add_HSNo (mul_HSNo (minus_HSNo Complex_i) x1) (mul_HSNo (OSNo_proj1 Quaternion_k) (conj_HSNo 0)) = minus_HSNo (minus_HSNo Quaternion_j).
Apply OSNo_p1_k with λ x0 x1 . add_HSNo (mul_HSNo (minus_HSNo Complex_i) Quaternion_k) (mul_HSNo x1 (conj_HSNo 0)) = minus_HSNo (minus_HSNo Quaternion_j).
Apply conj_HSNo_id_SNo with 0, λ x0 x1 . add_HSNo (mul_HSNo (minus_HSNo Complex_i) Quaternion_k) (mul_HSNo 0 x1) = minus_HSNo (minus_HSNo Quaternion_j) leaving 2 subgoals.
The subproof is completed by applying SNo_0.
Apply mul_HSNo_0L with 0, λ x0 x1 . add_HSNo (mul_HSNo (minus_HSNo Complex_i) Quaternion_k) x1 = minus_HSNo (minus_HSNo Quaternion_j) leaving 2 subgoals.
The subproof is completed by applying HSNo_0.
Apply minus_mul_HSNo_distrL with Complex_i, Quaternion_k, λ x0 x1 . add_HSNo x1 0 = minus_HSNo (minus_HSNo Quaternion_j) leaving 3 subgoals.
The subproof is completed by applying HSNo_Complex_i.
The subproof is completed by applying HSNo_Quaternion_k.
Apply Quaternion_i_k with λ x0 x1 . add_HSNo (minus_HSNo x1) 0 = minus_HSNo (minus_HSNo Quaternion_j).
Apply minus_HSNo_invol with Quaternion_j, λ x0 x1 . add_HSNo x1 0 = x1 leaving 2 subgoals.
The subproof is completed by applying HSNo_Quaternion_j.
Apply add_HSNo_0R with Quaternion_j.
...