Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Claim L1:
...
...
Claim L2:
...
...
Claim L3:
...
...
Claim L4:
...
...
Claim L5:
...
...
Apply explicit_Field_E with
RealsStruct_Q
x0
,
field4
x0
,
RealsStruct_one
x0
,
field1b
x0
,
field2b
x0
,
and
(
struct_b_b_e_e
(
pack_b_b_e_e
(
RealsStruct_Q
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
)
)
(
unpack_b_b_e_e_o
(
pack_b_b_e_e
(
RealsStruct_Q
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
)
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Field
x1
x4
x5
x2
x3
)
)
leaving 2 subgoals.
Assume H6:
explicit_Field
(
RealsStruct_Q
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
.
Assume H7:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
field1b
x0
x1
x2
∈
RealsStruct_Q
x0
.
Assume H8:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Q
x0
⟶
field1b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field1b
x0
x1
x2
)
x3
.
Assume H9:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x2
x1
.
Assume H10:
field4
x0
∈
RealsStruct_Q
x0
.
Assume H11:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
field1b
x0
(
field4
x0
)
x1
=
x1
.
Assume H12:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
∃ x2 .
and
(
x2
∈
RealsStruct_Q
x0
)
(
field1b
x0
x1
x2
=
field4
x0
)
.
Assume H13:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
field2b
x0
x1
x2
∈
RealsStruct_Q
x0
.
Assume H14:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Q
x0
⟶
field2b
x0
x1
(
field2b
x0
x2
x3
)
=
field2b
x0
(
field2b
x0
x1
x2
)
x3
.
Assume H15:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
field2b
x0
x1
x2
=
field2b
x0
x2
x1
.
Assume H16:
RealsStruct_one
x0
∈
RealsStruct_Q
x0
.
Assume H17:
RealsStruct_one
x0
=
field4
x0
⟶
∀ x1 : ο .
x1
.
Assume H18:
∀ x1 .
x1
∈
RealsStruct_Q
x0
⟶
field2b
x0
(
RealsStruct_one
x0
)
x1
=
x1
.
Assume H19:
∀ x1 .
...
⟶
...
⟶
∃ x2 .
and
(
x2
∈
RealsStruct_Q
x0
)
(
field2b
x0
x1
x2
=
RealsStruct_one
x0
)
.
...
...
■