Let x0 of type ι be given.
Apply H0 with
1eb0a.. x0.
Let x1 of type ι be given.
Apply H1 with
1eb0a.. x0.
Apply H3 with
1eb0a.. x0.
Let x2 of type ι be given.
Apply H4 with
1eb0a.. x0.
Apply H6 with
1eb0a.. x0.
Let x3 of type ι be given.
Apply H7 with
1eb0a.. x0.
Apply H9 with
1eb0a.. x0.
Let x4 of type ι be given.
Apply H10 with
1eb0a.. x0.
Assume H12:
x0 = f4b0e.. x1 x2 x3 x4.
Let x5 of type ο be given.
Apply H13 with
x1.
Apply andI with
SNo x1,
∃ x6 . and (SNo x6) (∃ x7 . and (SNo x7) (∃ x8 . and (SNo x8) (∃ x9 . and (SNo x9) (∃ x10 . and (SNo x10) (∃ x11 . and (SNo x11) (∃ x12 . and (SNo x12) (x0 = bbc71.. x1 x6 x7 x8 x9 x10 x11 x12))))))) leaving 2 subgoals.
The subproof is completed by applying H2.
Let x6 of type ο be given.
Assume H14:
∀ x7 . and (SNo x7) (∃ x8 . and (SNo x8) ...) ⟶ x6.