Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι be given.
Assume H0:
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x6 x8 x9 = x6 x10 x11 ⟶ and (x8 = x10) (x9 = x11).
Assume H1:
62ee1.. x0 x1 x2 x3 x4 x5.
Assume H2:
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x3 x8 x9 = x3 x9 x8.
Assume H4:
∀ x8 . prim1 x8 x0 ⟶ x3 x1 x8 = x8.
Assume H5:
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ prim1 (x4 x8 x9) x0.
Assume H6:
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ (λ x10 . prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x10 = x6 x11 x12)))) (x6 x8 x9) = x8.
Assume H7:
∀ x8 . prim1 x8 x0 ⟶ prim1 (x6 x8 x1) (1216a.. x7 (λ x9 . (λ x10 . x6 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x10) x1) x9 = x9)).
Assume H9:
∀ x8 . ... ⟶ ∀ x9 . ... ⟶ ∀ x10 . ... ⟶ ∀ x11 . ... ⟶ (λ x12 x13 . x6 (x3 ((λ x14 . prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x14 = x6 x15 x16)))) x12) ((λ x14 . prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x14 = x6 x15 x16)))) x13)) (x3 ((λ x14 . prim0 (λ x15 . and (prim1 x15 x0) (x14 = x6 ((λ x16 . prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x16 = x6 x17 x18)))) x14) x15))) x12) ((λ x14 . prim0 (λ x15 . and (prim1 x15 x0) (x14 = x6 ((λ x16 . prim0 ...) ...) ...))) ...))) ... ... = ....