Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιιιο be given.
Let x2 of type ιι be given.
Let x3 of type ιιιιιι be given.
Apply unknownprop_795e291855a044d4d636c961caa1600704603cc02e33a7b37aa66e8d7f6512db with x0, x1, x2, x3, x0, x1, x2, x3, λ x4 . x4, λ x4 x5 x6 . x6 leaving 4 subgoals.
Let x4 of type ι be given.
Assume H0: x0 x4.
The subproof is completed by applying H0.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Assume H0: x0 x4.
Assume H1: x0 x5.
Assume H2: x1 x4 x5 x6.
The subproof is completed by applying H2.
Let x4 of type ι be given.
Assume H0: x0 x4.
Let x5 of type ιιο be given.
Assume H1: x5 ((λ x6 x7 x8 . x8) x4 x4 (x2 x4)) (x2 ((λ x6 . x6) x4)).
The subproof is completed by applying H1.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Assume H0: x0 x4.
Assume H1: x0 x5.
Assume H2: x0 x6.
Assume H3: x1 x4 x5 x7.
Assume H4: x1 x5 x6 x8.
Let x9 of type ιιο be given.
Assume H5: x9 ((λ x10 x11 x12 . x12) x4 x6 (x3 x4 x5 x6 x8 x7)) (x3 ((λ x10 . x10) x4) ((λ x10 . x10) x5) ((λ x10 . x10) x6) ((λ x10 x11 x12 . x12) x5 x6 x8) ((λ x10 x11 x12 . x12) x4 x5 x7)).
The subproof is completed by applying H5.