Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Apply Field_of_RealsStruct_0 with
x0
,
λ x1 x2 .
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
setminus
x1
(
Sing
(
field4
x0
)
)
⟶
x3
=
field2b
x0
x4
(
Field_div
(
Field_of_RealsStruct
x0
)
x3
x4
)
.
Apply Field_of_RealsStruct_2f with
x0
,
λ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
ap
(
Field_of_RealsStruct
x0
)
0
⟶
∀ x4 .
x4
∈
setminus
(
ap
(
Field_of_RealsStruct
x0
)
0
)
(
Sing
(
field4
x0
)
)
⟶
x3
=
x1
x4
(
Field_div
(
Field_of_RealsStruct
x0
)
x3
x4
)
leaving 2 subgoals.
The subproof is completed by applying H0.
Apply Field_of_RealsStruct_3 with
x0
,
λ x1 x2 .
∀ x3 .
x3
∈
ap
(
Field_of_RealsStruct
x0
)
0
⟶
∀ x4 .
x4
∈
setminus
(
ap
(
Field_of_RealsStruct
x0
)
0
)
(
Sing
x1
)
⟶
x3
=
(
λ x5 .
ap
(
ap
(
ap
(
Field_of_RealsStruct
x0
)
2
)
x5
)
)
x4
(
Field_div
(
Field_of_RealsStruct
x0
)
x3
x4
)
.
Apply Field_mult_div with
Field_of_RealsStruct
x0
.
Apply Field_Field_of_RealsStruct with
x0
.
The subproof is completed by applying H0.
■