Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H0: combinator x0.
Assume H1: combinator x1.
Assume H2: combinator x2.
Assume H3: combinator x3.
Apply unknownprop_6d861aa069d3c6b52ea4a1626e236a28ccef38ff01ec7a48d612e144c66b13b6 with λ x4 x5 : ι → ι → ο . x5 x0 x2x5 x1 x3x5 ((λ x6 x7 . Inj1 (setsum x6 x7)) x0 x1) ((λ x6 x7 . Inj1 (setsum x6 x7)) x2 x3).
Assume H4: (λ x4 x5 . ∀ x6 : ι → ι → ο . per_i x6(∀ x7 . combinator x7x6 x7 x7)(∀ x7 x8 x9 x10 . combinator x7combinator x8combinator x9combinator x10x6 x7 x9x6 x8 x10x6 (Inj1 (setsum x7 x8)) (Inj1 (setsum x9 x10)))(∀ x7 x8 . x6 (Inj1 (setsum (Inj1 (setsum (Inj0 0) x7)) x8)) x7)(∀ x7 x8 x9 . x6 (Inj1 (setsum (Inj1 (setsum (Inj1 (setsum (Inj0 (Power 0)) x7)) x8)) x9)) (Inj1 (setsum (Inj1 (setsum x7 x9)) (Inj1 (setsum x8 x9)))))x6 x4 x5) x0 x2.
Assume H5: (λ x4 x5 . ∀ x6 : ι → ι → ο . per_i x6(∀ x7 . combinator x7x6 x7 x7)(∀ x7 x8 x9 x10 . combinator x7combinator x8combinator x9combinator x10x6 x7 x9x6 x8 x10x6 (Inj1 (setsum x7 x8)) (Inj1 (setsum x9 x10)))(∀ x7 x8 . x6 (Inj1 (setsum (Inj1 (setsum (Inj0 0) x7)) x8)) x7)(∀ x7 x8 x9 . x6 (Inj1 (setsum (Inj1 (setsum (Inj1 (setsum (Inj0 (Power 0)) x7)) x8)) x9)) (Inj1 (setsum (Inj1 (setsum x7 x9)) (Inj1 (setsum x8 x9)))))x6 x4 x5) x1 x3.
Let x4 of type ιιο be given.
Assume H6: per_i x4.
Assume H7: ∀ x5 . combinator x5x4 x5 x5.
Assume H8: ∀ x5 x6 x7 x8 . combinator x5combinator x6combinator x7combinator x8x4 x5 x7x4 x6 x8x4 (Inj1 (setsum x5 x6)) (Inj1 (setsum x7 x8)).
Assume H9: ∀ x5 x6 . x4 (Inj1 (setsum (Inj1 (setsum (Inj0 0) x5)) x6)) x5.
Assume H10: ∀ x5 x6 x7 . x4 (Inj1 (setsum (Inj1 (setsum (Inj1 (setsum (Inj0 (Power 0)) x5)) x6)) x7)) (Inj1 (setsum (Inj1 (setsum x5 x7)) (Inj1 (setsum ... ...)))).
...