Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιι be given.
Let x3 of type ιιο be given.
Let x4 of type ι be given.
Assume H0: struct_b_u_r_e (pack_b_u_r_e x0 x1 x2 x3 x4).
Apply H0 with λ x5 . x5 = pack_b_u_r_e x0 x1 x2 x3 x4x4x0 leaving 2 subgoals.
Let x5 of type ι be given.
Let x6 of type ιιι be given.
Assume H1: ∀ x7 . x7x5∀ x8 . x8x5x6 x7 x8x5.
Let x7 of type ιι be given.
Assume H2: ∀ x8 . x8x5x7 x8x5.
Let x8 of type ιιο be given.
Let x9 of type ι be given.
Assume H3: x9x5.
Assume H4: pack_b_u_r_e x5 x6 x7 x8 x9 = pack_b_u_r_e x0 x1 x2 x3 x4.
Apply pack_b_u_r_e_inj with x5, x0, x6, x1, x7, x2, x8, x3, x9, x4, x4x0 leaving 2 subgoals.
The subproof is completed by applying H4.
Assume H5: and (and (and (x5 = x0) (∀ x10 . x10x5∀ x11 . x11x5x6 x10 x11 = x1 x10 x11)) (∀ x10 . x10x5x7 x10 = x2 x10)) (∀ x10 . x10x5∀ x11 . x11x5x8 x10 x11 = x3 x10 x11).
Apply H5 with x9 = x4x4x0.
Assume H6: and (and (x5 = x0) (∀ x10 . x10x5∀ x11 . x11x5x6 x10 x11 = x1 x10 x11)) (∀ x10 . x10x5x7 x10 = x2 x10).
Apply H6 with (∀ x10 . x10x5∀ x11 . x11x5x8 x10 x11 = x3 x10 x11)x9 = x4x4x0.
Assume H7: and (x5 = x0) (∀ x10 . x10x5∀ x11 . x11x5x6 x10 x11 = x1 x10 x11).
Apply H7 with (∀ x10 . x10x5x7 x10 = x2 x10)(∀ x10 . x10x5∀ x11 . x11x5x8 x10 x11 = x3 x10 x11)x9 = x4x4x0.
Assume H8: x5 = x0.
Assume H9: ∀ x10 . x10x5∀ x11 . x11x5x6 x10 x11 = x1 x10 x11.
Assume H10: ∀ x10 . x10x5x7 x10 = x2 x10.
Assume H11: ∀ x10 . x10x5∀ x11 . x11x5x8 x10 x11 = x3 x10 x11.
Assume H12: x9 = x4.
Apply H8 with λ x10 x11 . x4x10.
Apply H12 with λ x10 x11 . x10....
...
...