Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιι be given.
Let x4 of type ι be given.
Apply unknownprop_b9e706605ee9588d251c289fbb55bc905fa3eb7fe1a8560e3057c9742d5adef0 with λ x5 x6 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ι)ι → ο . x6 x0 x1 x2 x3 x4∀ x7 : ο . (binop_on x0 x1binop_on x0 x2binop_on x0 x3(∀ x8 . In x8 x0and (x1 x4 x8 = x8) (x1 x8 x4 = x8))(∀ x8 . In x8 x0∀ x9 . In x9 x0and (and (and (x2 x8 (x1 x8 x9) = x9) (x1 x8 (x2 x8 x9) = x9)) (x3 (x1 x8 x9) x9 = x8)) (x1 (x3 x8 x9) x9 = x8))x7)x7.
The subproof is completed by applying unknownprop_bcfb235173b6e24d61b0900ebc9059688ec23fd5128404d7a36e3b666224a280 with binop_on x0 x1, binop_on x0 x2, binop_on x0 x3, ∀ x5 . In x5 x0and (x1 x4 x5 = x5) (x1 x5 x4 = x5), ∀ x5 . In x5 x0∀ x6 . In x6 x0and (and (and (x2 x5 (x1 x5 x6) = x6) (x1 x5 (x2 x5 x6) = x6)) (x3 (x1 x5 x6) x6 = x5)) (x1 (x3 x5 x6) x6 = x5).