Let x0 of type ι be given.
Let x1 of type (ι → ο) → ο be given.
Let x2 of type ι → ι → ι be given.
Assume H0:
∀ x3 . prim1 x3 x0 ⟶ ∀ x4 . prim1 x4 x0 ⟶ prim1 (x2 x3 x4) x0.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ο be given.
Assume H1:
∀ x5 . ∀ x6 : (ι → ο) → ο . ∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x5 ⟶ ∀ x9 . prim1 x9 x5 ⟶ prim1 (x7 x8 x9) x5) ⟶ ∀ x8 : ι → ι → ο . x4 (dd9fd.. x5 x6 x7 x8).
Apply H1 with
x0,
x1,
x2,
x3.
The subproof is completed by applying H0.