Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
be given.
Assume H0:
Church6_p
x0
.
Let x1 of type
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
be given.
Assume H1:
Church6_p
x1
.
Apply H0 with
λ x2 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
x2
x1
)
=
x1
leaving 6 subgoals.
Apply H1 with
λ x2 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
x2
)
=
x2
leaving 6 subgoals.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
λ x3 x4 x5 x6 x7 x8 .
x6
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x6
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
λ x3 x4 x5 x6 x7 x8 .
x7
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x7
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
(
λ x3 x4 x5 x6 x7 x8 .
x8
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x8
)
.
The subproof is completed by applying H2.
Apply H1 with
λ x2 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
x2
)
=
x2
leaving 6 subgoals.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
λ x3 x4 x5 x6 x7 x8 .
x6
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x6
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
λ x3 x4 x5 x6 x7 x8 .
x7
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x7
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
(
λ x3 x4 x5 x6 x7 x8 .
x8
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x8
)
.
The subproof is completed by applying H2.
Apply H1 with
λ x2 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
x2
)
=
x2
leaving 6 subgoals.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x3
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x4
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
)
)
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
.
The subproof is completed by applying H2.
Let x2 of type
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
be given.
Assume H2:
x2
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
(
λ x3 x4 x5 x6 x7 x8 .
x5
)
(
Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5
...
...
)
)
...
.
...
...
...
...
...
...
■