Let x0 of type ι → ο be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι → ι → ι → ι be given.
Let x8 of type ι → ι → ι → ι be given.
Let x9 of type ι → ι be given.
Let x10 of type ι be given.
Let x11 of type ι → ι be given.
Let x12 of type ι → ο be given.
Let x13 of type ι be given.
Let x14 of type ι → ι → ι be given.
Let x15 of type ι → ο be given.
Let x16 of type ι → ο be given.
Let x17 of type ι → ο be given.
Let x18 of type ι → ο be given.
Let x19 of type ι → ο be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι be given.
Let x23 of type ι → ο be given.
Let x24 of type ι → ο be given.
Let x25 of type ι → ο be given.
Let x26 of type ι → ο be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι → ι → ι be given.
Let x29 of type ι → ι be given.
Let x30 of type ι → ο be given.
Let x31 of type ι be given.
Let x32 of type ι → ι be given.
Let x33 of type ι be given.
Let x34 of type ι → ι be given.
Let x35 of type ι → ι → ο be given.
Let x36 of type ι → ι be given.
Let x37 of type ι → ι → ο be given.
Let x38 of type ι → ι → ι → ι → ι be given.
Let x39 of type ι → ι → ι → ι → ι be given.
Let x40 of type ι → ι be given.
Let x41 of type ι → ο be given.
Let x42 of type ι → ι → ο be given.
Let x43 of type ι → ι be given.
Let x44 of type ι → ι → ο be given.
Let x45 of type ι → ι be given.
Let x46 of type ι → ι → ι → ο be given.
Let x47 of type ι → ι → ι be given.
Let x48 of type ι → ι → ι → ι be given.
Let x49 of type ι → ι → ι → ο be given.
Let x50 of type ι → ι be given.
Let x51 of type ι → ο be given.
Assume H5:
∀ x52 x53 x54 x55 . x51 x55 ⟶ x44 x52 (x43 x55) ⟶ x44 x54 (x50 x55) ⟶ x44 x53 (x45 (x43 x55)) ⟶ x46 x55 (x48 (x43 x55) x53 (x47 (x43 x55) x52)) x54 ⟶ (x49 x55 x52 x54 ⟶ False) ⟶ False.
Assume H6:
∀ x52 x53 x54 x55 . x51 x55 ⟶ x44 x52 (x43 x55) ⟶ x44 x54 (x50 x55) ⟶ x44 x53 (x45 (x43 x55)) ⟶ x46 x55 (x48 (x43 x55) x53 (x47 (x43 x55) x52)) x54 ⟶ (x46 x55 x53 x54 ⟶ False) ⟶ False.
Assume H7:
∀ x52 x53 x54 x55 . x51 x55 ⟶ x44 x52 (x43 x55) ⟶ x44 x54 (x50 x55) ⟶ x44 x53 (x45 (x43 x55)) ⟶ x46 x55 x53 x54 ⟶ x49 x55 x52 x54 ⟶ (x46 x55 (x48 (x43 x55) x53 (x47 (x43 x55) x52)) x54 ⟶ False) ⟶ False.
Assume H8:
∀ x52 x53 . x0 x53 ⟶ (x53 = x52 ⟶ False) ⟶ x0 x52 ⟶ False.
Assume H9:
∀ x52 x53 . x42 x52 x53 ⟶ x0 x53 ⟶ False.
Assume H10:
∀ x52 . x0 x52 ⟶ (x52 = x1 ⟶ False) ⟶ False.
Assume H11:
∀ x52 x53 x54 . x42 x52 x53 ⟶ x44 x53 (x45 x54) ⟶ x0 x54 ⟶ False.
Assume H12:
∀ x52 x53 x54 . x42 x53 x54 ⟶ x44 x54 (x45 x52) ⟶ (x44 x53 x52 ⟶ False) ⟶ False.
Assume H13:
∀ x52 x53 x54 x55 . x41 x55 ⟶ x51 x55 ⟶ x44 x54 (x43 x55) ⟶ x44 x52 (x43 x55) ⟶ x44 x53 (x40 x55) ⟶ (x54 = x52 ⟶ False) ⟶ x37 (x38 (x43 x55) x54 x52 (x39 x53 x52 x54 x55)) x55 ⟶ False.
Assume H14:
∀ x52 x53 x54 x55 . x41 x55 ⟶ x51 x55 ⟶ x44 x54 (x43 x55) ⟶ x44 x52 (x43 x55) ⟶ x44 x53 (x40 x55) ⟶ (x54 = x52 ⟶ False) ⟶ (x2 x55 (x39 x53 x52 x54 x55) x53 ⟶ False) ⟶ False.
Assume H15:
∀ x52 x53 x54 x55 . ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ (x44 ... ... ⟶ False) ⟶ False.