Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNoLe 0 x0.
Assume H2: ∀ x1 . x1SNoS_ (SNoLev x0)SNoLe 0 x1and (and (SNo (sqrt_SNo_nonneg x1)) (SNoLe 0 (sqrt_SNo_nonneg x1))) (mul_SNo (sqrt_SNo_nonneg x1) (sqrt_SNo_nonneg x1) = x1).
Assume H3: SNoCutP (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1)).
Assume H4: SNoLe 0 (SNoCut (famunion omega (λ x1 . (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 0) x1)) (famunion omega (λ x1 . (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 1) x1))).
Assume H5: SNoLt x0 (mul_SNo (SNoCut (famunion omega (λ x1 . (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 0) x1)) (famunion omega (λ x1 . (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 1) x1))) (SNoCut (famunion omega (λ x1 . (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 0) x1)) (famunion omega (λ x1 . (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 1) x1)))).
Apply H3 with False.
Assume H6: and (∀ x1 . x1famunion omega (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 0)SNo x1) (∀ x1 . x1famunion omega (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 1)SNo x1).
Apply H6 with (∀ x1 . x1famunion omega (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 0)∀ x2 . x2famunion omega (λ x3 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x3) 1)SNoLt x1 x2)False.
Assume H7: ∀ x1 . x1famunion omega (λ x2 . (λ x3 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x3) 0) x2)SNo x1.
Assume H8: ∀ x1 . x1famunion omega (λ x2 . (λ x3 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x3) 1) x2)SNo x1.
Assume H9: ∀ x1 . x1famunion omega (λ x2 . (λ x3 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x3) 0) x2)∀ x2 . x2famunion omega (λ x3 . (λ x4 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x4) 1) x3)SNoLt x1 x2.
Apply SNoCutP_SNoCut_impred with famunion omega (λ x1 . (λ x2 . ap (SNo_sqrtaux ... ... ...) 0) ...), ..., ... leaving 2 subgoals.
...
...