Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι → ι be given.
Let x6 of type ι → ι → ο be given.
Let x7 of type ι → ι be given.
Let x8 of type ι be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι be given.
Let x13 of type ι → ι → ι be given.
Let x14 of type ι be given.
Let x15 of type ι be given.
Let x16 of type ι → ι → ι → ι be given.
Let x17 of type ι → ι → ι be given.
Let x18 of type ι → ι → ι → ι be given.
Let x19 of type ι → ι → ι be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι → ι be given.
Let x23 of type ι be given.
Let x24 of type ι → ο be given.
Assume H5:
∀ x25 x26 . x24 x26 ⟶ (x26 = x25 ⟶ False) ⟶ x24 x25 ⟶ False.
Assume H6:
∀ x25 x26 . x0 x25 x26 ⟶ x24 x26 ⟶ False.
Assume H7:
∀ x25 . x24 x25 ⟶ (x25 = x23 ⟶ False) ⟶ False.
Assume H8:
∀ x25 x26 x27 . x0 x25 x26 ⟶ x2 x26 (x1 x27) ⟶ x24 x27 ⟶ False.
Assume H9:
∀ x25 x26 x27 . x0 x26 x27 ⟶ x2 x27 (x1 x25) ⟶ (x2 x26 x25 ⟶ False) ⟶ False.
Assume H10:
∀ x25 x26 . x3 x26 x25 ⟶ (x2 x26 (x1 x25) ⟶ False) ⟶ False.
Assume H11:
∀ x25 x26 . x2 x26 (x1 x25) ⟶ (x3 x26 x25 ⟶ False) ⟶ False.
Assume H12:
∀ x25 x26 . x2 x25 x26 ⟶ (x24 x26 ⟶ False) ⟶ (x0 x25 x26 ⟶ False) ⟶ False.
Assume H13:
∀ x25 x26 . x0 x26 x25 ⟶ (x2 x26 x25 ⟶ False) ⟶ False.
Assume H14:
∀ x25 . (x4 x25 x25 ⟶ False) ⟶ False.
Assume H15:
∀ x25 . (x3 x25 x25 ⟶ False) ⟶ False.
Assume H16:
∀ x25 . (x24 x25 ⟶ False) ⟶ (x6 (x5 x25) x25 ⟶ False) ⟶ False.
Assume H17:
∀ x25 . (x24 x25 ⟶ False) ⟶ (x2 (x5 x25) (x1 x25) ⟶ False) ⟶ False.
Assume H18:
∀ x25 . x6 (x7 x25) x25 ⟶ False.
Assume H19:
∀ x25 . (x2 (x7 x25) (x1 x25) ⟶ False) ⟶ False.
Assume H20:
x24 x8 ⟶ False.
Assume H21:
∀ x25 . (x24 (x22 x25) ⟶ False) ⟶ False.
Assume H22:
∀ x25 . (x2 (x22 x25) (x1 x25) ⟶ False) ⟶ False.
Assume H23:
(x24 x21 ⟶ False) ⟶ False.
Assume H24:
∀ x25 . (x24 x25 ⟶ False) ⟶ x24 (x9 x25) ⟶ False.
Assume H25:
∀ x25 . (x24 x25 ⟶ False) ⟶ (x2 (x9 x25) (x1 x25) ⟶ False) ⟶ False.
Assume H26:
(x24 x23 ⟶ False) ⟶ False.
Assume H27:
∀ x25 . x24 (x1 x25) ⟶ False.
Assume H28:
∀ x25 . (x2 (x10 x25) x25 ⟶ False) ⟶ False.
Assume H29:
(x24 x20 ⟶ False) ⟶ False.
Assume H30:
∀ x25 x26 . x0 (x11 x25 x26) x25 ⟶ (x3 x26 x25 ⟶ False) ⟶ False.
Assume H31:
∀ x25 x26 . (x0 (x11 x25 x26) x26 ⟶ False) ⟶ (x3 x26 x25 ⟶ False) ⟶ False.
Assume H32:
∀ x25 x26 x27 . ... ⟶ ... ⟶ (x0 x25 ... ⟶ False) ⟶ False.