Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type (ιο) → ο be given.
Let x3 of type (ιο) → ο be given.
Let x4 of type ιι be given.
Let x5 of type ιι be given.
Let x6 of type ιο be given.
Let x7 of type ιο be given.
Let x8 of type ιο be given.
Let x9 of type ιο be given.
Assume H0: f4fb4.. x0 x2 x4 x6 x8 = f4fb4.. x1 x3 x5 x7 x9.
Claim L1: x1 = f482f.. (f4fb4.. x0 x2 x4 x6 x8) 4a7ef..
Apply unknownprop_8f7e1d767a4e108888a6217bd59b2f947ddbe938cdcd115f198c837383b75c99 with f4fb4.. ... ... ... ... ..., ..., ..., ..., ..., ....
...
Claim L2: x0 = x1
Apply L1 with λ x10 x11 . x0 = x11.
The subproof is completed by applying unknownprop_ae678ad878bbb814c7a7959a43e7a6938c60fbfc51ab3f6fdd661988d67e7f0a with x0, x2, x4, x6, x8.
Apply and5I with x0 = x1, ∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x0)x2 x10 = x3 x10, ∀ x10 . prim1 x10 x0x4 x10 = x5 x10, ∀ x10 . prim1 x10 x0x6 x10 = x7 x10, ∀ x10 . prim1 x10 x0x8 x10 = x9 x10 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ιο be given.
Assume H3: ∀ x11 . x10 x11prim1 x11 x0.
Apply unknownprop_e76823d36ee6db8ba833b34f42a40774cc3044020361dd9910febc7213bfae10 with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x3 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: ∀ x11 . x10 x11prim1 x11 x1
Apply L2 with λ x11 x12 . ∀ x13 . x10 x13prim1 x13 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_c (f482f.. x12 (4ae4a.. 4a7ef..)) x10 = x3 x10.
Let x11 of type οοο be given.
Apply unknownprop_e76823d36ee6db8ba833b34f42a40774cc3044020361dd9910febc7213bfae10 with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_5e1f761718d285321c4cb3dc55f0919bfa4a4030aa97d5da2bb3f8a34962fa42 with x0, x2, x4, x6, x8, x10, λ x11 x12 . x12 = x5 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . f482f.. (f482f.. x12 (4ae4a.. (4ae4a.. 4a7ef..))) x10 = x5 x10.
Let x11 of type ιιο be given.
Apply unknownprop_5e1f761718d285321c4cb3dc55f0919bfa4a4030aa97d5da2bb3f8a34962fa42 with x1, x3, x5, x7, x9, x10, λ x12 x13 . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_0aba2d0795a56205879344d672f508bd17da6911a38e8280a31351ebdd8657c2 with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x7 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x10 = x7 x10.
Let x11 of type οοο be given.
Apply unknownprop_0aba2d0795a56205879344d672f508bd17da6911a38e8280a31351ebdd8657c2 with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_1c902ef957d0386ad522c8de47ba741a02d9b45b3972360fdd4aa7b83a097539 with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x9 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x10 = x9 x10.
Let x11 of type οοο be given.
Apply unknownprop_1c902ef957d0386ad522c8de47ba741a02d9b45b3972360fdd4aa7b83a097539 with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.