pf |
---|
Let x0 of type ι be given.
Apply H0 with λ x1 . x1 = 02b3f.. (f482f.. x1 4a7ef..) (e3162.. (f482f.. x1 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x1 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x1 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x1 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))).
Let x1 of type ι be given.
Let x2 of type ι → ι → ι be given.
Assume H1: ∀ x3 . prim1 x3 x1 ⟶ ∀ x4 . prim1 x4 x1 ⟶ prim1 (x2 x3 x4) x1.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ο be given.
Let x5 of type ι be given.
Apply unknownprop_ad9008b6f2810a0e7af71389371f7ebb2072060b97071ea08eac6648b1392012 with x1, x2, x3, x4, x5, λ x6 x7 . 02b3f.. x1 x2 x3 x4 x5 = 02b3f.. x6 (e3162.. (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))).
Apply unknownprop_cbf73d6429ec8fb960c667c86ebf36a6e504cfb29f13f37b32891904f10afd24 with x1, x2, x3, x4, x5, λ x6 x7 . 02b3f.. x1 x2 x3 x4 x5 = 02b3f.. x1 (e3162.. (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6.
Apply unknownprop_c147ebcdd5d3b27c06a434813a5f57c4e04bc9f848ef1f4e375cdd419a0f74a0 with x1, x2, e3162.. (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..)), x3, 2b2e3.. (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..))), x4, decode_p (f482f.. (02b3f.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))), x5 leaving 3 subgoals.
The subproof is completed by applying unknownprop_68a0f865e52b1f2086cf38474b5b6a79876dd054c0b1d3fd70ebad35e03e9edb with x1, x2, x3, x4, x5.
Let x6 of type ι be given.
Let x7 of type ι be given.
Apply unknownprop_903218825c8191e8fbd41c581818c0ede6ad6eef9ed65f1a49cd074f0c204395 with x1, x2, x3, x4, x5, x6, x7, λ x8 x9 : ο . iff (x3 x6 x7) x8 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying iff_refl with x3 x6 x7.
Let x6 of type ι be given.
Apply unknownprop_cfa405b88b73d28820f49d9bf44e58432ec35b7af75bdb9faca7a7821189bcd7 with x1, x2, x3, x4, x5, x6, λ x7 x8 : ο . iff (x4 x6) x7 leaving 2 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying iff_refl with x4 x6.
■
|
|