Search for blocks/addresses/...

Proofgold Proof

pf
Apply ax_mp__ax_1__ax_2__ax_3__df_bi__df_or__df_an__df_ifp__df_3or__df_3an__df_nan__df_xor__df_tru__df_fal__df_had__df_cad__df_ex__df_nf with ∀ x0 x1 : ο . x0x1x0.
Assume H0: ∀ x0 x1 : ο . x0(x0x1)x1.
Assume H1: ∀ x0 x1 : ο . x0x1x0.
Assume H2: ∀ x0 x1 x2 : ο . (x0x1x2)(x0x1)x0x2.
Assume H3: ∀ x0 x1 : ο . (wn x0wn x1)x1x0.
Assume H4: ∀ x0 x1 : ο . wn ((wb x0 x1wn ((x0x1)wn (x1x0)))wn (wn ((x0x1)wn (x1x0))wb x0 x1)).
Assume H5: ∀ x0 x1 : ο . wb (wo x0 x1) (wn x0x1).
Assume H6: ∀ x0 x1 : ο . wb (wa x0 x1) (wn (x0wn x1)).
Assume H7: ∀ x0 x1 x2 : ο . wb (wif x0 x1 x2) (wo (wa x0 x1) (wa (wn x0) x2)).
Assume H8: ∀ x0 x1 x2 : ο . wb (w3o x0 x1 x2) (wo (wo x0 x1) x2).
Assume H9: ∀ x0 x1 x2 : ο . wb (w3a x0 x1 x2) (wa (wa x0 x1) x2).
Assume H10: ∀ x0 x1 : ο . wb (wnan x0 x1) (wn (wa x0 x1)).
Assume H11: ∀ x0 x1 : ο . wb (wxo x0 x1) (wn (wb x0 x1)).
Assume H12: wb wtru ((∀ x0 . wceq (cv x0) (cv x0))∀ x0 . wceq (cv x0) (cv x0)).
Assume H13: wb wfal (wn wtru).
Assume H14: ∀ x0 x1 x2 : ο . wb (whad x0 x1 x2) (wxo (wxo x0 x1) x2).
Assume H15: ∀ x0 x1 x2 : ο . wb (wcad x0 x1 x2) (wo (wa x0 x1) (wa x2 (wxo x0 x1))).
Assume H16: ∀ x0 : ι → ο . wb (wex (λ x1 . x0 x1)) (wn (∀ x1 . wn (x0 x1))).
Assume H17: ∀ x0 : ι → ο . wb (wnf (λ x1 . x0 x1)) (wex (λ x1 . x0 x1)∀ x1 . x0 x1).
The subproof is completed by applying H1.