Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιο be given.
Assume H0: struct_b_b_r (pack_b_b_r x0 x1 x2 x3).
Apply H0 with λ x4 . x4 = pack_b_b_r x0 x1 x2 x3∀ x5 . x5x0∀ x6 . x6x0x2 x5 x6x0 leaving 2 subgoals.
Let x4 of type ι be given.
Let x5 of type ιιι be given.
Assume H1: ∀ x6 . x6x4∀ x7 . x7x4x5 x6 x7x4.
Let x6 of type ιιι be given.
Assume H2: ∀ x7 . x7x4∀ x8 . x8x4x6 x7 x8x4.
Let x7 of type ιιο be given.
Assume H3: pack_b_b_r x4 x5 x6 x7 = pack_b_b_r x0 x1 x2 x3.
Apply pack_b_b_r_inj with x4, x0, x5, x1, x6, x2, x7, x3, ∀ x8 . x8x0∀ x9 . x9x0x2 x8 x9x0 leaving 2 subgoals.
The subproof is completed by applying H3.
Assume H4: and (and (x4 = x0) (∀ x8 . x8x4∀ x9 . x9x4x5 x8 x9 = x1 x8 x9)) (∀ x8 . x8x4∀ x9 . x9x4x6 x8 x9 = x2 x8 x9).
Apply H4 with (∀ x8 . x8x4∀ x9 . x9x4x7 x8 x9 = x3 x8 x9)∀ x8 . x8x0∀ x9 . x9x0x2 x8 x9x0.
Assume H5: and (x4 = x0) (∀ x8 . x8x4∀ x9 . x9x4x5 x8 x9 = x1 x8 x9).
Apply H5 with (∀ x8 . x8x4∀ x9 . x9x4x6 x8 x9 = x2 x8 x9)(∀ x8 . x8x4∀ x9 . x9x4x7 x8 x9 = x3 x8 x9)∀ x8 . x8x0∀ x9 . x9x0x2 x8 x9x0.
Assume H6: x4 = x0.
Assume H7: ∀ x8 . x8x4∀ x9 . x9x4x5 x8 x9 = x1 x8 x9.
Assume H8: ∀ x8 . x8x4∀ x9 . x9x4x6 x8 x9 = x2 x8 x9.
Assume H9: ∀ x8 . x8x4∀ x9 . x9x4x7 x8 x9 = x3 x8 x9.
Apply H6 with λ x8 x9 . ∀ x10 . x10x8∀ x11 . x11x8x2 x10 x11x8.
...
...