Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type (ιο) → ο be given.
Let x2 of type (ιο) → ο be given.
Assume H0: ∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)iff (x1 x3) (x2 x3).
Claim L1: encode_c x0 x1 = encode_c x0 x2
Apply encode_c_ext with x0, x1, x2.
The subproof is completed by applying H0.
Apply L1 with λ x3 x4 . lam 2 (λ x5 . If_i (x5 = 0) x0 (encode_c x0 x1)) = lam 2 (λ x5 . If_i (x5 = 0) x0 x3).
Let x3 of type ιιο be given.
Assume H2: x3 (lam 2 (λ x4 . If_i (x4 = 0) x0 (encode_c x0 x1))) (lam 2 (λ x4 . If_i (x4 = 0) x0 (encode_c x0 x1))).
The subproof is completed by applying H2.