Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: Field x0.
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H1: nIn x2 (K_field_0 x0 x0).
Claim L2: not (and (x1K_field_0 x0 x0) (x2setminus (K_field_0 x0 x0) (Sing (K_field_3 x0 x0))))
Assume H2: and (x1K_field_0 x0 x0) (x2setminus (K_field_0 x0 x0) (Sing (K_field_3 x0 x0))).
Apply H2 with False.
Assume H3: x1K_field_0 x0 x0.
Assume H4: x2setminus (K_field_0 x0 x0) (Sing (K_field_3 x0 x0)).
Apply setminusE with K_field_0 x0 x0, Sing (K_field_3 x0 x0), x2, False leaving 2 subgoals.
The subproof is completed by applying H4.
Assume H5: x2K_field_0 x0 x0.
Assume H6: nIn x2 (Sing (K_field_3 x0 x0)).
Apply H1.
The subproof is completed by applying H5.
Apply If_i_0 with and (x1K_field_0 x0 x0) (x2setminus (K_field_0 x0 x0) (Sing (K_field_3 x0 x0))), prim0 (λ x3 . and (x3K_field_0 x0 x0) (x1 = K_field_2_b x0 x0 x2 x3)), 0.
The subproof is completed by applying L2.