Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι be given.
Apply H0 with
c2e41.. x0 x1.
Assume H1:
and (∀ x3 . prim1 x3 x0 ⟶ prim1 (x2 x3) x1) (∀ x3 . prim1 x3 x0 ⟶ ∀ x4 . prim1 x4 x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4).
Apply H1 with
(∀ x3 . prim1 x3 x1 ⟶ ∃ x4 . and (prim1 x4 x0) (x2 x4 = x3)) ⟶ c2e41.. x0 x1.
Assume H2:
∀ x3 . prim1 x3 x0 ⟶ prim1 (x2 x3) x1.
Assume H3:
∀ x3 . prim1 x3 x0 ⟶ ∀ x4 . prim1 x4 x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4.
Assume H4:
∀ x3 . prim1 x3 x1 ⟶ ∃ x4 . and (prim1 x4 x0) (x2 x4 = x3).
Let x3 of type ο be given.