Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι be given.
Let x6 of type ι → ο be given.
Let x7 of type ι → ο be given.
Let x8 of type ι → ο be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ι be given.
Let x11 of type ι → ι → ο be given.
Let x12 of type ι → ι be given.
Let x13 of type ι → ι → ο be given.
Let x14 of type ι → ι be given.
Let x15 of type ι → ι be given.
Let x16 of type ι → ο be given.
Let x17 of type ι → ο be given.
Let x18 of type ι → ι → ο be given.
Let x19 of type ι → ι be given.
Let x20 of type ι → ι be given.
Let x21 of type ι be given.
Let x22 of type ι → ο be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι → ι → ι be given.
Let x26 of type ι → ι → ι be given.
Let x27 of type ι → ι → ο be given.
Let x28 of type ι be given.
Let x29 of type ι be given.
Let x30 of type ι be given.
Let x31 of type ι be given.
Let x32 of type ι be given.
Let x33 of type ι → ι → ι be given.
Let x34 of type ι → ι be given.
Let x35 of type ι be given.
Let x36 of type ι be given.
Let x37 of type ι → ι be given.
Let x38 of type ι → ι be given.
Let x39 of type ι → ι → ο be given.
Let x40 of type ι → ο be given.
Let x41 of type ι be given.
Let x42 of type ι → ι → ι be given.
Let x43 of type ι → ι → ι → ο be given.
Let x44 of type ι → ι → ι → ι be given.
Let x45 of type ι → ι → ι → ι → ι be given.
Let x46 of type ι → ο be given.
Let x47 of type ι be given.
Let x48 of type ι → ι → ο be given.
Let x49 of type ι → ι → ι be given.
Let x50 of type ι → ι be given.
Let x51 of type ι → ο be given.
Let x52 of type ι → ο be given.
Let x53 of type ι → ο be given.
Let x54 of type ι → ι → ο be given.
Let x55 of type ι → ι → ι → ι be given.
Let x56 of type ι → ι → ι be given.
Let x57 of type ι → ι → ι be given.
Let x58 of type ι → ι → ι be given.
Let x59 of type ι → ι → ο be given.
Let x60 of type ι → ο be given.
Let x61 of type ι → ο be given.
Let x62 of type ι → ο be given.
Let x63 of type ι → ο be given.
Let x64 of type ι be given.
Let x65 of type ι → ο be given.
Assume H5:
∀ x66 x67 . x65 x67 ⟶ (x67 = x66 ⟶ False) ⟶ x65 x66 ⟶ False.
Assume H6:
∀ x66 x67 . x0 x66 x67 ⟶ x65 x67 ⟶ False.
Assume H7:
∀ x66 . x65 x66 ⟶ (x66 = x64 ⟶ False) ⟶ False.
Assume H8:
∀ x66 x67 x68 . x0 x66 x67 ⟶ x2 x67 (x1 x68) ⟶ x65 x68 ⟶ False.
Assume H9:
∀ x66 x67 . (x63 x67 ⟶ False) ⟶ x51 x67 ⟶ x62 x67 ⟶ x52 x67 ⟶ x61 x67 ⟶ x53 x67 ⟶ x60 x67 ⟶ x54 x66 x67 ⟶ x0 (x55 x67 (x55 x67 (x58 x66 x67) (x57 x66 x67)) (x55 x67 (x56 x66 x67) (x57 x66 x67))) x66 ⟶ (x59 x66 x67 ⟶ False) ⟶ False.
Assume H10:
∀ x66 x67 . (x63 x67 ⟶ False) ⟶ x51 x67 ⟶ x62 x67 ⟶ x52 x67 ⟶ x61 x67 ⟶ x53 x67 ⟶ x60 x67 ⟶ x54 x66 x67 ⟶ (x0 (x55 x67 (x55 x67 (x58 x66 x67) (x56 x66 x67)) (x57 x66 x67)) x66 ⟶ False) ⟶ (x59 x66 x67 ⟶ False) ⟶ False.
Assume H11:
∀ x66 x67 . (x63 x67 ⟶ False) ⟶ x51 x67 ⟶ x62 x67 ⟶ x52 x67 ⟶ x61 x67 ⟶ x53 x67 ⟶ x60 x67 ⟶ x54 x66 x67 ⟶ (x2 (x57 x66 x67) (x50 x67) ⟶ False) ⟶ (x59 x66 x67 ⟶ False) ⟶ False.
Assume H12:
∀ x66 x67 . (x63 x67 ⟶ False) ⟶ x51 x67 ⟶ x62 x67 ⟶ x52 x67 ⟶ x61 x67 ⟶ x53 x67 ⟶ x60 x67 ⟶ x54 x66 x67 ⟶ (x2 (x56 x66 x67) (x50 x67) ⟶ False) ⟶ (x59 x66 x67 ⟶ False) ⟶ False.
Assume H13:
∀ x66 x67 . (x63 x67 ⟶ False) ⟶ x51 x67 ⟶ x62 x67 ⟶ x52 x67 ⟶ x61 x67 ⟶ x53 x67 ⟶ x60 x67 ⟶ x54 x66 x67 ⟶ (x2 (x58 x66 x67) (x50 x67) ⟶ False) ⟶ (x59 x66 x67 ⟶ False) ⟶ False.
Assume H14: ....