Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: x0int.
Apply and3I with 1int, x0int, ∃ x1 . and (x1int) (mul_SNo 1 x1 = x0) leaving 3 subgoals.
Apply Subq_omega_int with 1.
Apply nat_p_omega with 1.
The subproof is completed by applying nat_1.
The subproof is completed by applying H0.
Let x1 of type ο be given.
Assume H1: ∀ x2 . and (x2int) (mul_SNo 1 x2 = x0)x1.
Apply H1 with x0.
Apply andI with x0int, mul_SNo 1 x0 = x0 leaving 2 subgoals.
The subproof is completed by applying H0.
Apply mul_SNo_oneL with x0.
Apply int_SNo with x0.
The subproof is completed by applying H0.