Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Claim L1: ...
...
Claim L2: ...
...
Claim L3: ...
...
Claim L4: ...
...
Let x0 of type ιιι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ιι be given.
Let x5 of type ιιι be given.
Let x6 of type ιιι be given.
Let x7 of type ιιο be given.
Let x8 of type ιιο be given.
Let x9 of type ι be given.
Assume H5: ∀ x10 x11 . x8 x11 x9x8 x10 x9x7 x11 x10(x6 x11 (x5 x10 x11) = x10False)False.
Assume H6: ∀ x10 x11 . x8 x11 x9x8 x10 x9x7 x11 x10(x8 (x5 x10 x11) x9False)False.
Assume H7: ∀ x10 x11 x12 . x8 x12 x9x8 x10 x9x8 x11 x9x12 = x6 x10 x11(x7 x11 x12False)False.
Assume H8: ∀ x10 x11 x12 . x8 x12 x9x8 x10 x9x8 x11 x9(x0 x12 (x6 x10 x11) = x6 (x0 x12 x10) (x0 x12 x11)False)False.
Assume H9: ∀ x10 . (x8 (x4 x10) x10False)False.
Assume H10: ∀ x10 x11 . x8 x11 x9x8 x10 x9(x8 (x0 x11 x10) x9False)False.
Assume H11: ∀ x10 x11 . x8 x11 x9x8 x10 x9(x8 (x6 x11 x10) x9False)False.
Assume H12: ∀ x10 x11 . x8 x11 x9x8 x10 x9(x7 x11 x10False)(x7 x10 x11False)False.
Assume H13: ∀ x10 x11 . x8 x11 x9x8 x10 x9(x0 x11 x10 = x0 x10 x11False)False.
Assume H14: ∀ x10 x11 . x8 x11 x9x8 x10 x9(x6 x11 x10 = x6 x10 x11False)False.
Assume H15: x7 (x0 x1 x3) (x0 x2 x3)False.
Assume H16: (x7 x1 x2False)False.
Assume H17: (x8 x3 x9False)False.
Assume H18: (x8 x2 x9False)False.
Assume H19: (x8 x1 x9False)False.
Claim L20: ...
...
Claim L21: ...
...
Claim L22: ...
...
Claim L23: ...
...
Claim L24: ...
...
Claim L25: ...
...
Claim L26: ...
...
Claim L27: ...
...
Claim L28: ...
...
Claim L29: ...
...
Claim L30: ...
...
Claim L31: ...
...
Claim L32: ...
...
Claim L33: ...
...
Claim L34: ...
...
Claim L35: ...
...
Claim L36: ...
...
Claim L37: ...
...
Claim L38: ...
...
Claim L39: ...
...
Claim L40: ...
...
Claim L41: ...
...
Claim L42: ...
...
Claim L43: ...
...
Claim L44: ...
...
Claim L45: ...
...
Claim L46: ...
...
Claim L47: ...
...
Claim L48: ...
...
Claim L49: ...
...
Claim L50: ...
...
Claim L51: ...
...
Claim L52: ...
...
Claim L53: ...
...
Claim L54: ...
...
Claim L55: ...
...
Claim L56: ...
...
Claim L57: ...
...
Claim L58: ...
...
Claim L59: ...
...
Claim L60: ...
...
Claim L61: ...
...
Claim L62: ...
...
Claim L63: ...
...
Claim L64: ...
...
Claim L65: ...
...
Claim L66: ...
...
Claim L67: ...
...
Claim L68: ...
...
Claim L69: ...
...
Claim L70: ...
...
Claim L71: ...
...
Claim L72: ...
...
Claim L73: ...
...
Claim L74: ...
...
Claim L75: ...
...
Claim L76: ...
...
Claim L77: ...
...
Claim L78: ...
...
Claim L79: ...
...
Claim L80: ...
...
Claim L81: ...
...
Claim L82: ...
...
Claim L83: ...
...
Claim L84: ...
...
Claim L85: ...
...
Claim L86: ...
...
Claim L87: ...
...
Claim L88: ...
...
Claim L89: ...
...
Claim L90: ...
...
Claim L91: ...
...
Claim L92: ...
...
Claim L93: ...
...
Claim L94: ...
...
Claim L95: ...
...
Claim L96: ...
...
Claim L97: ...
...
Claim L98: ...
...
Claim L99: x6 (x0 x3 (x5 x2 x1)) ... = ...False
...
Claim L100: x0 x2 x3 = x0 x2 x3False
Assume H100: x0 x2 x3 = x0 x2 x3.
Apply L90.
Assume H101: x6 (x0 x3 (x5 x2 x1)) (x0 x1 x3) = x0 x2 x3.
Apply L99.
Apply H101 with λ x10 x11 . x11 = x0 x2 x3.
The subproof is completed by applying H100.
Apply L100.
The subproof is completed by applying L0 with x0 x2 x3.