Let x0 of type ι → ι → ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι → ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι → ι → ο be given.
Let x8 of type ι → ι → ο be given.
Let x9 of type ι be given.
Assume H5:
∀ x10 x11 . x8 x11 x9 ⟶ x8 x10 x9 ⟶ x7 x11 x10 ⟶ (x6 x11 (x5 x10 x11) = x10 ⟶ False) ⟶ False.
Assume H6:
∀ x10 x11 . x8 x11 x9 ⟶ x8 x10 x9 ⟶ x7 x11 x10 ⟶ (x8 (x5 x10 x11) x9 ⟶ False) ⟶ False.
Assume H7:
∀ x10 x11 x12 . x8 x12 x9 ⟶ x8 x10 x9 ⟶ x8 x11 x9 ⟶ x12 = x6 x10 x11 ⟶ (x7 x11 x12 ⟶ False) ⟶ False.
Assume H8:
∀ x10 x11 x12 . x8 x12 x9 ⟶ x8 x10 x9 ⟶ x8 x11 x9 ⟶ (x0 x12 (x6 x10 x11) = x6 (x0 x12 x10) (x0 x12 x11) ⟶ False) ⟶ False.
Assume H9:
∀ x10 . (x8 (x4 x10) x10 ⟶ False) ⟶ False.
Assume H10:
∀ x10 x11 . x8 x11 x9 ⟶ x8 x10 x9 ⟶ (x8 (x0 x11 x10) x9 ⟶ False) ⟶ False.
Assume H11:
∀ x10 x11 . x8 x11 x9 ⟶ x8 x10 x9 ⟶ (x8 (x6 x11 x10) x9 ⟶ False) ⟶ False.
Assume H12:
∀ x10 x11 . x8 x11 x9 ⟶ x8 x10 x9 ⟶ (x7 x11 x10 ⟶ False) ⟶ (x7 x10 x11 ⟶ False) ⟶ False.
Assume H13:
∀ x10 x11 . x8 x11 x9 ⟶ x8 x10 x9 ⟶ (x0 x11 x10 = x0 x10 x11 ⟶ False) ⟶ False.
Assume H14:
∀ x10 x11 . x8 x11 x9 ⟶ x8 x10 x9 ⟶ (x6 x11 x10 = x6 x10 x11 ⟶ False) ⟶ False.
Assume H15:
x7 (x0 x1 x3) (x0 x2 x3) ⟶ False.
Assume H16:
(x7 x1 x2 ⟶ False) ⟶ False.
Assume H17:
(x8 x3 x9 ⟶ False) ⟶ False.
Assume H18:
(x8 x2 x9 ⟶ False) ⟶ False.
Assume H19:
(x8 x1 x9 ⟶ False) ⟶ False.
Claim L99:
x6 (x0 x3 (x5 x2 x1)) ... = ... ⟶ False
Claim L100:
x0 x2 x3 = x0 x2 x3 ⟶ False
Assume H100: x0 x2 x3 = x0 x2 x3.
Apply L90.
Assume H101: x6 (x0 x3 (x5 x2 x1)) (x0 x1 x3) = x0 x2 x3.
Apply L99.
Apply H101 with
λ x10 x11 . x11 = x0 x2 x3.
The subproof is completed by applying H100.
Apply L100.
The subproof is completed by applying L0 with x0 x2 x3.