Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Apply explicit_OrderedField_E with x0, x1, x2, x3, x4, x5, ∀ x6 : ο . (............(∀ x7 . ...∀ x8 : ι → ο . ...(∀ x9 . x9{x10 ∈ {x10 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 ... ...}|...}x8 (x3 x9 x2))x8 x7)(∀ x7 . x7{x8 ∈ {x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8}|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10}explicit_Nats_one_plus {x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10} x2 (λ x9 . x3 x9 x2) x7 x8 = x3 x7 x8)(∀ x7 . x7{x8 ∈ {x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8}|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10}explicit_Nats_one_mult {x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10} x2 (λ x9 . x3 x9 x2) x7 x8 = x4 x7 x8)(∀ x7 . x7{x8 ∈ {x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8}|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10}x3 x7 x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10})(∀ x7 . x7{x8 ∈ {x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8}|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10}x4 x7 x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10})x6)x6.
...