Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Apply explicit_Reals_E with
x0,
x1,
x2,
x3,
x4,
x5,
... ⟶ explicit_Reals {x7 ∈ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6|(λ x8 . x6 ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))) x8) x1) x7 = x7} (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))) x7) ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))) x8)) (x3 ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x9) x10))) x7) ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x9) x10))) x8))) (λ x7 x8 . x6 (x3 (x4 ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))) x7) ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))) x8)) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x9) x10))) x7) ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x9) x10))) x8)))) (x3 (x4 ((λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))) ...) ...) ...)) ....