Let x0 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x1 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x3 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x4 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x5 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x6 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x7 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x8 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x9 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x10 of type ι be given.
Assume H20:
∀ x11 . x11 ∈ u5 ⟶ ∀ x12 . x12 ∈ u5 ⟶ ap (ap x10 x11) x12 ∈ 24.
Assume H21:
∀ x11 . x11 ∈ u5 ⟶ ∀ x12 . x12 ∈ u5 ⟶ ∀ x13 . x13 ∈ u5 ⟶ ap (ap x10 x11) x12 = ap (ap x10 x11) x13 ⟶ x12 = x13.
Assume H22:
∀ x11 . x11 ∈ u5 ⟶ ∀ x12 . x12 ∈ u5 ⟶ (x11 = x12 ⟶ ∀ x13 : ο . x13) ⟶ ∀ x13 . x13 ∈ u5 ⟶ ∀ x14 . x14 ∈ u5 ⟶ ap (ap x10 x11) x13 = ap (ap x10 x12) x14 ⟶ ∀ x15 : ο . x15.
Let x11 of type ο be given.
Apply H25 with
λ x12 . ap (ap x10 (ap x12 0)) (ap x12 1).
Apply andI with
∀ x12 . x12 ∈ setprod u5 u5 ⟶ (λ x13 . ap (ap x10 (ap x13 0)) (ap x13 1)) x12 ∈ u24,
∀ x12 . ... ⟶ ∀ x13 . ... ⟶ (λ x14 . ap (ap x10 ...) ...) ... = ... ⟶ x12 = x13 leaving 2 subgoals.
Apply unknownprop_8a6bdce060c93f04626730b6e01b099cc0487102a697e253c81b39b9a082262d with
u24 leaving 2 subgoals.
The subproof is completed by applying unknownprop_a7f3578ada9cacf1cb3296f5290d2c691e8a6f96bb11bbe9193ef025e25fc69a.
Apply unknownprop_cb31ba5b53de7ed1501ccb7838b0596c4806363c08f052d879d991759ac7d059 with
λ x11 x12 . atleastp x11 u24.
Apply atleastp_tra with
mul_nat u5 u5,
setprod u5 u5,
u24 leaving 2 subgoals.
Apply equip_atleastp with
mul_nat u5 u5,
setprod u5 u5.
Apply unknownprop_0ff18b7eb504eb7c264f5ad42462c21af832d47f1fcbedf3de67bfbc10c7fdfc with
u5,
u5 leaving 2 subgoals.
The subproof is completed by applying nat_5.
The subproof is completed by applying nat_5.
The subproof is completed by applying L25.