Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x1 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x2 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x3 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x4 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x5 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x6 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x7 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x8 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x9 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H0: ChurchNum_3ary_proj_p x0.
Assume H1: ChurchNum_3ary_proj_p x1.
Assume H2: ChurchNum_3ary_proj_p x2.
Assume H3: ChurchNum_3ary_proj_p x3.
Assume H4: ChurchNum_3ary_proj_p x4.
Assume H5: ChurchNum_8ary_proj_p x5.
Assume H6: ChurchNum_8ary_proj_p x6.
Assume H7: ChurchNum_8ary_proj_p x7.
Assume H8: ChurchNum_8ary_proj_p x8.
Assume H9: ChurchNum_8ary_proj_p x9.
Assume H10: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x1 x6 = λ x10 x11 . x11.
Assume H11: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x2 x7 = λ x10 x11 . x11.
Assume H12: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x3 x8 = λ x10 x11 . x11.
Assume H13: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x4 x9 = λ x10 x11 . x11.
Assume H14: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x2 x7 = λ x10 x11 . x11.
Assume H15: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x3 x8 = λ x10 x11 . x11.
Assume H16: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x4 x9 = λ x10 x11 . x11.
Assume H17: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x3 x8 = λ x10 x11 . x11.
Assume H18: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x4 x9 = λ x10 x11 . x11.
Assume H19: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x3 x8 x4 x9 = λ x10 x11 . x11.
Let x10 of type ι be given.
Assume H20: ∀ x11 . x11u5∀ x12 . x12u5ap (ap x10 x11) x1224.
Assume H21: ∀ x11 . x11u5∀ x12 . x12u5∀ x13 . x13u5ap (ap x10 x11) x12 = ap (ap x10 x11) x13x12 = x13.
Assume H22: ∀ x11 . x11u5∀ x12 . x12u5(x11 = x12∀ x13 : ο . x13)∀ x13 . x13u5∀ x14 . x14u5ap (ap x10 x11) x13 = ap (ap x10 x12) x14∀ x15 : ο . x15.
Claim L23: ...
...
Claim L24: ...
...
Claim L25: atleastp (setprod u5 u5) u24
Let x11 of type ο be given.
Assume H25: ∀ x12 : ι → ι . inj (setprod u5 u5) u24 x12x11.
Apply H25 with λ x12 . ap (ap x10 (ap x12 0)) (ap x12 1).
Apply andI with ∀ x12 . x12setprod u5 u5(λ x13 . ap (ap x10 (ap x13 0)) (ap x13 1)) x12u24, ∀ x12 . ...∀ x13 . ...(λ x14 . ap (ap x10 ...) ...) ... = ...x12 = x13 leaving 2 subgoals.
...
...
Apply unknownprop_8a6bdce060c93f04626730b6e01b099cc0487102a697e253c81b39b9a082262d with u24 leaving 2 subgoals.
The subproof is completed by applying unknownprop_a7f3578ada9cacf1cb3296f5290d2c691e8a6f96bb11bbe9193ef025e25fc69a.
Apply unknownprop_cb31ba5b53de7ed1501ccb7838b0596c4806363c08f052d879d991759ac7d059 with λ x11 x12 . atleastp x11 u24.
Apply atleastp_tra with mul_nat u5 u5, setprod u5 u5, u24 leaving 2 subgoals.
Apply equip_atleastp with mul_nat u5 u5, setprod u5 u5.
Apply unknownprop_0ff18b7eb504eb7c264f5ad42462c21af832d47f1fcbedf3de67bfbc10c7fdfc with u5, u5 leaving 2 subgoals.
The subproof is completed by applying nat_5.
The subproof is completed by applying nat_5.
The subproof is completed by applying L25.