Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Apply H1 with
∀ x5 : ο . (∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ omega ⟶ ∀ x8 . x8 ∈ omega ⟶ ∀ x9 . x9 ∈ omega ⟶ x0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9))) ⟶ x5) ⟶ x5.
Assume H6:
x1 ∈ omega.
Assume H7:
∀ x5 . x5 ∈ omega ⟶ x1 = mul_nat 2 x5 ⟶ ∀ x6 : ο . x6.
Apply H2 with
∀ x5 : ο . (∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ omega ⟶ ∀ x8 . x8 ∈ omega ⟶ ∀ x9 . x9 ∈ omega ⟶ x0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9))) ⟶ x5) ⟶ x5.
Assume H8:
x2 ∈ omega.
Assume H9:
∀ x5 . x5 ∈ omega ⟶ x2 = mul_nat 2 x5 ⟶ ∀ x6 : ο . x6.
Apply H3 with
∀ x5 : ο . (∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ omega ⟶ ∀ x8 . x8 ∈ omega ⟶ ∀ x9 . x9 ∈ omega ⟶ x0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9))) ⟶ x5) ⟶ x5.
Assume H10:
x3 ∈ omega.
Assume H11:
∀ x5 . x5 ∈ omega ⟶ x3 = mul_nat 2 x5 ⟶ ∀ x6 : ο . x6.
Apply H4 with
∀ x5 : ο . (∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ omega ⟶ ∀ x8 . x8 ∈ omega ⟶ ∀ x9 . x9 ∈ omega ⟶ x0 = add_SNo ((λ x10 . mul_SNo x10 x10) x6) (add_SNo ((λ x10 . mul_SNo x10 x10) x7) (add_SNo ((λ x10 . mul_SNo x10 x10) x8) ((λ x10 . mul_SNo x10 x10) x9))) ⟶ x5) ⟶ x5.
Assume H12: x4 ∈ ....