Search for blocks/addresses/...

Proofgold Proof

pf
Apply SNoLev_ind with λ x0 . x0realSNoLt 0 x0and (recip_SNo_pos x0real) (∀ x1 . nat_p x1and (ap (SNo_recipaux x0 recip_SNo_pos x1) 0real) (ap (SNo_recipaux x0 recip_SNo_pos x1) 1real)).
Let x0 of type ι be given.
Assume H0: SNo x0.
Assume H1: ∀ x1 . x1SNoS_ (SNoLev x0)x1realSNoLt 0 x1and (recip_SNo_pos x1real) (∀ x2 . nat_p x2and (∀ x3 . x3ap (SNo_recipaux x1 recip_SNo_pos x2) 0x3real) (∀ x3 . x3ap (SNo_recipaux x1 recip_SNo_pos x2) 1x3real)).
Assume H2: x0real.
Assume H3: SNoLt 0 x0.
Apply real_E with x0, and (recip_SNo_pos x0real) (∀ x1 . nat_p x1and (ap (SNo_recipaux x0 recip_SNo_pos x1) 0real) (ap (SNo_recipaux x0 recip_SNo_pos x1) 1real)) leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H4: SNo x0.
Assume H5: SNoLev x0ordsucc omega.
Assume H6: x0SNoS_ (ordsucc omega).
Assume H7: SNoLt (minus_SNo omega) x0.
Assume H8: SNoLt x0 omega.
Assume H9: ∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0.
Assume H10: ∀ x1 . x1omega∃ x2 . and (x2SNoS_ omega) (and (SNoLt x2 x0) (SNoLt x0 (add_SNo x2 (eps_ x1)))).
Claim L11: ...
...
Claim L12: ...
...
Claim L13: ...
...
Apply andI with recip_SNo_pos x0real, ∀ x1 . nat_p x1and (ap (SNo_recipaux x0 recip_SNo_pos x1) 0real) (ap (SNo_recipaux x0 recip_SNo_pos x1) 1real) leaving 2 subgoals.
Claim L14: ...
...
Apply SNoCutP_SNoCut_impred with famunion omega (λ x1 . ap (SNo_recipaux x0 recip_SNo_pos x1) 0), famunion omega (λ x1 . ap (SNo_recipaux x0 recip_SNo_pos x1) 1), recip_SNo_pos x0real leaving 2 subgoals.
Apply SNo_recipaux_lem2 with x0, recip_SNo_pos leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H3.
The subproof is completed by applying L14.
Assume H15: SNo (SNoCut (famunion omega (λ x1 . ap (SNo_recipaux x0 recip_SNo_pos x1) 0)) (famunion omega (λ x1 . ap (SNo_recipaux x0 recip_SNo_pos x1) 1))).
Assume H16: SNoLev (SNoCut (famunion omega (λ x1 . ap (SNo_recipaux x0 recip_SNo_pos x1) 0)) (famunion omega (λ x1 . ap (SNo_recipaux x0 recip_SNo_pos x1) 1)))....
...
...