Search for blocks/addresses/...
Proofgold Proof
pf
Apply SNoLev_ind with
λ x0 .
x0
∈
real
⟶
SNoLt
0
x0
⟶
and
(
recip_SNo_pos
x0
∈
real
)
(
∀ x1 .
nat_p
x1
⟶
and
(
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
0
⊆
real
)
(
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
1
⊆
real
)
)
.
Let x0 of type
ι
be given.
Assume H0:
SNo
x0
.
Assume H1:
∀ x1 .
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
x1
∈
real
⟶
SNoLt
0
x1
⟶
and
(
recip_SNo_pos
x1
∈
real
)
(
∀ x2 .
nat_p
x2
⟶
and
(
∀ x3 .
x3
∈
ap
(
SNo_recipaux
x1
recip_SNo_pos
x2
)
0
⟶
x3
∈
real
)
(
∀ x3 .
x3
∈
ap
(
SNo_recipaux
x1
recip_SNo_pos
x2
)
1
⟶
x3
∈
real
)
)
.
Assume H2:
x0
∈
real
.
Assume H3:
SNoLt
0
x0
.
Apply real_E with
x0
,
and
(
recip_SNo_pos
x0
∈
real
)
(
∀ x1 .
nat_p
x1
⟶
and
(
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
0
⊆
real
)
(
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
1
⊆
real
)
)
leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H4:
SNo
x0
.
Assume H5:
SNoLev
x0
∈
ordsucc
omega
.
Assume H6:
x0
∈
SNoS_
(
ordsucc
omega
)
.
Assume H7:
SNoLt
(
minus_SNo
omega
)
x0
.
Assume H8:
SNoLt
x0
omega
.
Assume H9:
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
.
Assume H10:
∀ x1 .
x1
∈
omega
⟶
∃ x2 .
and
(
x2
∈
SNoS_
omega
)
(
and
(
SNoLt
x2
x0
)
(
SNoLt
x0
(
add_SNo
x2
(
eps_
x1
)
)
)
)
.
Claim L11:
...
...
Claim L12:
...
...
Claim L13:
...
...
Apply andI with
recip_SNo_pos
x0
∈
real
,
∀ x1 .
nat_p
x1
⟶
and
(
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
0
⊆
real
)
(
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
1
⊆
real
)
leaving 2 subgoals.
Claim L14:
...
...
Apply SNoCutP_SNoCut_impred with
famunion
omega
(
λ x1 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
0
)
,
famunion
omega
(
λ x1 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
1
)
,
recip_SNo_pos
x0
∈
real
leaving 2 subgoals.
Apply SNo_recipaux_lem2 with
x0
,
recip_SNo_pos
leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H3.
The subproof is completed by applying L14.
Assume H15:
SNo
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
1
)
)
)
.
Assume H16:
SNoLev
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x1
)
1
)
)
)
∈
...
.
...
...
■