Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιιιιιι be given.
Assume H0: Church6_p x0.
Let x1 of type ιιιιιιι be given.
Assume H1: Church6_p x1.
Apply H0 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x2 (Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x2 x1) = x1 leaving 6 subgoals.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 (λ x3 x4 x5 x6 x7 x8 . x3) (Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 (λ x3 x4 x5 x6 x7 x8 . x3) x2) = x2 leaving 6 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 (λ x3 x4 x5 x6 x7 x8 . x4) (Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 (λ x3 x4 x5 x6 x7 x8 . x4) x2) = x2 leaving 6 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Apply H1 with λ x2 : ι → ι → ι → ι → ι → ι → ι . Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 (λ x3 x4 x5 x6 x7 x8 . x5) (Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 (λ x3 x4 x5 x6 x7 x8 . x5) x2) = x2 leaving 6 subgoals.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
The subproof is completed by applying H2.
Let x2 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
...
...
...
...
...
...