Search for blocks/addresses/...
Proofgold Proof
pf
Apply df_retr__df_pconn__df_sconn__df_cvm__df_goel__df_gona__df_goal__df_sat__df_sate__df_fmla__df_gonot__df_goan__df_goim__df_goor__df_gobi__df_goeq__df_goex__df_prv with
∀ x0 x1 :
ι → ο
.
wceq
(
cgox
x0
x1
)
(
cgon
(
cgol
(
cgon
x0
)
x1
)
)
.
Assume H0:
wceq
cretr
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wne
(
co
(
ccom
(
cv
x2
)
(
cv
x3
)
)
(
cres
cid
(
cuni
(
cv
x0
)
)
)
(
co
(
cv
x0
)
(
cv
x0
)
chtpy
)
)
c0
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x0
)
ccn
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
ccn
)
)
)
.
Assume H1:
wceq
cpconn
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cfv
cc0
(
cv
x3
)
)
(
cv
x1
)
)
(
wceq
(
cfv
c1
(
cv
x3
)
)
(
cv
x2
)
)
)
(
λ x3 .
co
cii
(
cv
x0
)
ccn
)
)
(
λ x2 .
cuni
(
cv
x0
)
)
)
(
λ x1 .
cuni
(
cv
x0
)
)
)
(
λ x0 .
ctop
)
)
.
Assume H2:
wceq
csconn
(
crab
(
λ x0 .
wral
(
λ x1 .
wceq
(
cfv
cc0
(
cv
x1
)
)
(
cfv
c1
(
cv
x1
)
)
⟶
wbr
(
cv
x1
)
(
cxp
(
co
cc0
c1
cicc
)
(
csn
(
cfv
cc0
(
cv
x1
)
)
)
)
(
cfv
(
cv
x0
)
cphtpc
)
)
(
λ x1 .
co
cii
(
cv
x0
)
ccn
)
)
(
λ x0 .
cpconn
)
)
.
Assume H3:
wceq
ccvm
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wa
(
wcel
(
cv
x3
)
(
cv
x4
)
)
(
wrex
(
λ x5 .
wa
(
wceq
(
cuni
(
cv
x5
)
)
(
cima
(
ccnv
(
cv
x2
)
)
(
cv
x4
)
)
)
(
wral
(
λ x6 .
wa
(
wral
(
λ x7 .
wceq
(
cin
(
cv
x6
)
(
cv
x7
)
)
c0
)
(
λ x7 .
cdif
(
cv
x5
)
(
csn
(
cv
x6
)
)
)
)
(
wcel
(
cres
(
cv
x2
)
(
cv
x6
)
)
(
co
(
co
(
cv
x0
)
(
cv
x6
)
crest
)
(
co
(
cv
x1
)
(
cv
x4
)
crest
)
chmeo
)
)
)
(
λ x6 .
cv
x5
)
)
)
(
λ x5 .
cdif
(
cpw
(
cv
x0
)
)
(
csn
c0
)
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cuni
(
cv
x1
)
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
ccn
)
)
)
.
Assume H4:
wceq
cgoe
(
cmpt
(
λ x0 .
cxp
com
com
)
(
λ x0 .
cop
c0
(
cv
x0
)
)
)
.
Assume H5:
wceq
cgna
(
cmpt
...
...
)
.
...
■