Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: Subq x1 x0.
Let x2 of type ι be given.
Assume H1: prim1 x2 (1216a.. (b5c9f.. x0 x0) (λ x3 . and (bij x0 x0 (λ x4 . f482f.. x3 x4)) (∀ x4 . prim1 x4 x1f482f.. x3 x4 = x4))).
Let x3 of type ι be given.
Assume H2: prim1 x3 (1216a.. (b5c9f.. x0 x0) (λ x4 . and (bij x0 x0 (λ x5 . f482f.. x4 x5)) (∀ x5 . prim1 x5 x1f482f.. x4 x5 = x5))).
Apply unknownprop_e4362c04e65a765de9cf61045b78be0adc0f9e51a17754420e1088df0891ff67 with b5c9f.. x0 x0, λ x4 . and (bij x0 x0 (λ x5 . f482f.. x4 x5)) (∀ x5 . prim1 x5 x1f482f.. x4 x5 = x5), x2, prim1 ((λ x4 x5 . 0fc90.. x0 (λ x6 . f482f.. x5 (f482f.. x4 x6))) x2 x3) (1216a.. (b5c9f.. x0 x0) (λ x4 . and (bij x0 x0 (λ x5 . f482f.. x4 x5)) (∀ x5 . prim1 x5 x1f482f.. x4 x5 = x5))) leaving 2 subgoals.
The subproof is completed by applying H1.
Assume H3: prim1 x2 (b5c9f.. x0 x0).
Assume H4: and (bij x0 x0 (f482f.. x2)) (∀ x4 . prim1 x4 x1f482f.. x2 x4 = x4).
Apply H4 with prim1 ((λ x4 x5 . 0fc90.. x0 (λ x6 . f482f.. x5 (f482f.. x4 x6))) x2 x3) (1216a.. (b5c9f.. x0 x0) (λ x4 . and (bij x0 x0 (λ x5 . f482f.. x4 x5)) (∀ x5 . prim1 x5 x1f482f.. x4 x5 = x5))).
Assume H5: bij x0 x0 (λ x4 . f482f.. x2 x4).
Assume H6: ∀ x4 . prim1 x4 x1f482f.. x2 x4 = x4.
Claim L7: ...
...
Apply unknownprop_e4362c04e65a765de9cf61045b78be0adc0f9e51a17754420e1088df0891ff67 with b5c9f.. x0 x0, λ x4 . and (bij x0 x0 (λ x5 . f482f.. x4 x5)) (∀ x5 . prim1 x5 x1f482f.. x4 x5 = x5), x3, prim1 ((λ x4 x5 . 0fc90.. x0 (λ x6 . f482f.. x5 (f482f.. x4 x6))) x2 x3) (1216a.. (b5c9f.. x0 x0) (λ x4 . and (bij x0 x0 (λ x5 . f482f.. x4 x5)) (∀ x5 . prim1 x5 x1f482f.. x4 x5 = x5))) leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H8: prim1 x3 (b5c9f.. x0 x0).
Assume H9: and (bij x0 x0 (f482f.. x3)) (∀ x4 . prim1 ... ...f482f.. x3 x4 = x4).
...