Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι → ι → ι → ι be given.
Let x8 of type ι → ο be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ι → ι → ι → ι be given.
Let x11 of type ι → ι → ι → ο be given.
Let x12 of type ι → ι → ι → ο be given.
Let x13 of type ι → ι be given.
Let x14 of type ι → ο be given.
Let x15 of type ι → ι → ι → ι be given.
Let x16 of type ι → ι → ι be given.
Let x17 of type ι → ι be given.
Let x18 of type ι → ι → ο be given.
Let x19 of type ι → ι be given.
Let x20 of type ι be given.
Let x21 of type ι → ι be given.
Let x22 of type ι be given.
Let x23 of type ι → ι → ι be given.
Let x24 of type ι → ι be given.
Let x25 of type ι → ι be given.
Let x26 of type ι → ο be given.
Let x27 of type ι → ο be given.
Let x28 of type ι → ο be given.
Let x29 of type ι → ο be given.
Let x30 of type ι → ο be given.
Let x31 of type ι be given.
Let x32 of type ι be given.
Let x33 of type ι be given.
Let x34 of type ι be given.
Let x35 of type ι be given.
Let x36 of type ι → ο be given.
Let x37 of type ι → ο be given.
Let x38 of type ι → ο be given.
Let x39 of type ι → ο be given.
Let x40 of type ι → ο be given.
Let x41 of type ι → ο be given.
Let x42 of type ι → ι be given.
Let x43 of type ι → ι be given.
Let x44 of type ι → ι → ο be given.
Let x45 of type ι be given.
Let x46 of type ι → ι be given.
Let x47 of type ι be given.
Let x48 of type ι → ι be given.
Let x49 of type ι → ι → ι → ι be given.
Let x50 of type ι be given.
Let x51 of type ι → ο be given.
Assume H5:
∀ x52 x53 . x51 x53 ⟶ (x53 = x52 ⟶ False) ⟶ x51 x52 ⟶ False.
Assume H6:
∀ x52 x53 . x0 x52 x53 ⟶ x51 x53 ⟶ False.
Assume H7:
∀ x52 . x51 x52 ⟶ (x52 = x50 ⟶ False) ⟶ False.
Assume H8:
∀ x52 x53 x54 . x0 x52 x53 ⟶ x2 x53 (x1 x54) ⟶ x51 x54 ⟶ False.
Assume H9:
∀ x52 x53 x54 . x0 x53 x54 ⟶ x2 x54 (x1 x52) ⟶ (x2 x53 x52 ⟶ False) ⟶ False.
Assume H10:
∀ x52 x53 . x3 x53 x52 ⟶ (x2 x53 (x1 x52) ⟶ False) ⟶ False.
Assume H11:
∀ x52 x53 . x2 x53 (x1 x52) ⟶ (x3 x53 x52 ⟶ False) ⟶ False.
Assume H12:
∀ x52 x53 x54 . (x7 x53 x52 x54 = x6 (x5 x53 x52) (x4 x54) ⟶ False) ⟶ False.
Assume H13:
∀ x52 x53 . x2 x52 x53 ⟶ (x51 x53 ⟶ False) ⟶ (x0 x52 x53 ⟶ False) ⟶ False.
Assume H14:
∀ x52 x53 x54 x55 x56 . x8 x56 ⟶ x2 x52 (x13 x56) ⟶ x2 x55 (x9 x56) ⟶ x2 x53 (x9 x56) ⟶ x2 x54 (x9 x56) ⟶ x12 x56 x55 x52 ⟶ x12 x56 x53 x52 ⟶ x12 x56 x54 x52 ⟶ (x11 x56 (x10 (x9 x56) x55 x53 x54) x52 ⟶ False) ⟶ False.
Assume H15:
∀ x52 x53 x54 x55 x56 . x8 x56 ⟶ x2 x52 (x13 x56) ⟶ x2 x55 (x9 x56) ⟶ x2 x53 (x9 x56) ⟶ x2 x54 (x9 x56) ⟶ x11 x56 (x10 (x9 x56) x55 x53 x54) x52 ⟶ (x12 x56 x54 x52 ⟶ False) ⟶ False.
Assume H16:
∀ x52 x53 x54 x55 x56 . x8 x56 ⟶ x2 x52 (x13 x56) ⟶ x2 x55 (x9 x56) ⟶ x2 x53 (x9 x56) ⟶ x2 x54 (x9 x56) ⟶ x11 x56 (x10 (x9 x56) x55 x53 x54) x52 ⟶ (x12 x56 x53 x52 ⟶ False) ⟶ False.
Assume H17:
∀ x52 x53 x54 x55 x56 . ... ⟶ ... ⟶ ... ⟶ ... ⟶ ... ⟶ x11 x56 (x10 (x9 x56) x55 x53 x54) ... ⟶ (x12 x56 x55 x52 ⟶ False) ⟶ False.