Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H2:
∀ x6 . x6 ∈ omega ⟶ SNoLt (ap x2 x6) x0.
Assume H4:
∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ x6 ⟶ SNoLt (ap x2 x7) (ap x2 x6).
Assume H6:
∀ x6 . x6 ∈ omega ⟶ SNoLt x0 (ap x3 x6).
Assume H7:
∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ x6 ⟶ SNoLt (ap x3 x6) (ap x3 x7).
Assume H9:
∀ x6 . x6 ∈ omega ⟶ SNoLt (ap x4 x6) x1.
Assume H11:
∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ x6 ⟶ SNoLt (ap x4 x7) (ap x4 x6).
Assume H13:
∀ x6 . x6 ∈ omega ⟶ SNoLt x1 (ap x5 x6).
Assume H14:
∀ x6 . x6 ∈ omega ⟶ ∀ x7 . x7 ∈ x6 ⟶ SNoLt (ap x5 x6) (ap x5 x7).
Apply real_add_SNo with
x0,
x1 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.