Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H0: x0real.
Assume H1: x1real.
Assume H2: ∀ x6 . x6omegaSNoLt (ap x2 x6) x0.
Assume H3: ∀ x6 . x6omegaSNoLt x0 (add_SNo (ap x2 x6) (eps_ x6)).
Assume H4: ∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x2 x7) (ap x2 x6).
Assume H5: ∀ x6 . x6omegaSNoLt (add_SNo (ap x3 x6) (minus_SNo (eps_ x6))) x0.
Assume H6: ∀ x6 . x6omegaSNoLt x0 (ap x3 x6).
Assume H7: ∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x3 x6) (ap x3 x7).
Assume H8: x5setexp (SNoS_ omega) omega.
Assume H9: ∀ x6 . x6omegaSNoLt (ap x4 x6) x1.
Assume H10: ∀ x6 . x6omegaSNoLt x1 (add_SNo (ap x4 x6) (eps_ x6)).
Assume H11: ∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x4 x7) (ap x4 x6).
Assume H12: ∀ x6 . x6omegaSNoLt (add_SNo (ap x5 x6) (minus_SNo (eps_ x6))) x1.
Assume H13: ∀ x6 . x6omegaSNoLt x1 (ap x5 x6).
Assume H14: ∀ x6 . x6omega∀ x7 . x7x6SNoLt (ap x5 x6) (ap x5 x7).
Assume H15: SNo x0.
Assume H16: SNo x1.
Assume H17: SNo (add_SNo x0 x1).
Assume H18: ∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x0))) (eps_ x7))x6 = x0.
Assume H19: ∀ x6 . x6SNoS_ omega(∀ x7 . x7omegaSNoLt (abs_SNo (add_SNo x6 (minus_SNo x1))) (eps_ x7))x6 = x1.
Assume H20: ∀ x6 . x6omegaap x2 (ordsucc x6)SNoS_ omega.
Assume H21: ∀ x6 . x6omegaSNo (ap x2 (ordsucc x6)).
Assume H22: ∀ x6 . x6omegaap x4 (ordsucc x6)SNoS_ omega.
Assume H23: ∀ x6 . x6omegaSNo (ap x4 (ordsucc x6)).
Apply real_add_SNo with x0, x1 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.